1. Chu, J.-H., K.-T. Feng, and C.-C. Liao, "Analysis and determination of cooperative MAC strategies from throughput perspectives," Wireless Networks, Dec. 2012, DOI 10.1007/s11276-012-0529-x. Google Scholar
2. Yu, X., L. Wang, H.-G. Wang, X. Wu, and Y.-H. Shang, "A novel multiport matching method for maximum capacity of an indoor MIMO system," Progress In Electromagnetics Research, Vol. 130, 67-84, 2012. Google Scholar
3. Pauliukas, D. and V. Vosylius, "Research of real time traffic transmission in 802.11 WLANs," Elektronika ir Elektrotechnika, Vol. 7, No. 95, 111-114, 2009. Google Scholar
4. Kajackas, A. and L. Pavilanskas, "Analysis of the technological expenditures of common WLAN models," Elektronika ir Elektrotechnika, Vol. 8, No. 72, 19-24, 2006. Google Scholar
5. Wei, K., Z. Zhang, and Z. Feng, "Design of a dualband omnidirectional planar microstrip antenna array," Progress In Electromagnetics Research, Vol. 126, 101-120, 2012.
doi:10.2528/PIER11112101 Google Scholar
6. Deruyck, M., W. Vereecken, W. Joseph, B. Lannoo, M. Pickavet, and L. Martens, "Reducing the power consumption in wireless access networks: Overview and recommendations," Progress In Electromagnetics Research, Vol. 132, 255-274, 2012. Google Scholar
7. Alsehaili, M., "Angle and time of arrival statistics of a three dimensional geometrical scattering channel model for indoor and outdoor propagation environments," Progress In Electromagnetics Research, Vol. 109, 191-209, 2010.
doi:10.2528/PIER10081106 Google Scholar
8. Phaebua, K., C. Phongcharoenpanich, M. Krairiksh, and T. Lertwiriyaprapa, "Path-loss prediction of radio wave propagation in an orchard by using modified UTD method," Progress In Electromagnetics Research, Vol. 128, 347-363, 2012. Google Scholar
9. Ndzi, D. L., M. A. M. Arif, A. Y. M. Shakaff, M. N. Ahmad, A. Harun, L. M. Kamarudin, A. Zakaria, M. F. Ramli, and M. S. Razalli, "Signal propagation analysis for low data rate wireless sensor network applications in sport grounds and on roads," Progress In Electromagnetics Research, Vol. 125, 1-19, 2012.
doi:10.2528/PIER11111406 Google Scholar
10. Yu, X., L. Wang, H.-G. Wang, X. Wu, and Y.-H. Shang, "A novel multiport matching method for maximum capacity of an indoor MIMO system," Progress In Electromagnetics Research, Vol. 130, 67-84, 2012. Google Scholar
11. Chen, Z. and Y.-P. Zhang, "Effects of antennas and propagation channels on synchronization performance of a pulse-based ultra-wideband radio system," Progress In Electromagnetics Research, Vol. 115, 95-112, 2011. Google Scholar
12. Ndzi, D. L., K. Stuart, S. Toautachone, B. Vuksanovic, and D. Sanders, "Wideband sounder for dynamic and static wireless channel characterisation: Urban picocell channel model," Progress In Electromagnetics Research, Vol. 113, 285-312, 2011. Google Scholar
13. ITU, ITU-R P.1145, "Propagation data for the terrestrial land mobile service in the VHF and UHF bands,", 1995. Google Scholar
14. ITU, ITU-R P.1407, "Multipath propagation and parameterization of its characteristics,", 2009. Google Scholar
15. Rappaport, T. S., Wireless Communications. Principles and Practice, 2nd Edition, Prentice Hall, 2002.
16. Hashemi, H., "The indoor radio propagation channel," IEEE Proceedings, Vol. 81, No. 7, 943-968, Jul. 1993.
doi:10.1109/5.231342 Google Scholar
17. Staniec, K., "The indoor radiowave propagation modeling in ISM bands for broadband wireless systems,", Ph.D. Dissertation, Wroclaw University of Technology, Wroclaw, Poland, 2006. Google Scholar
18. Pomianek, A. J., K. Staniec, and Z. Joskiewicz, "Practical remarks on measurement and simulation methods to emulate the wireless channel in the reverberation chamber," Progress In Electromagnetics Research, Vol. 105, 49-69, 2010.
doi:10.2528/PIER10022605 Google Scholar
19. Staniec, K. and A. J. Pomianek, "On simulating the radio signal propagation in the reverberation chamber with the ray launching method," Progress In Electromagnetics Research B, Vol. 27, 83-99, 2011. Google Scholar
20. Reza, A. W., M. S. Sarker, and K. Dimyati, "A novel integrated mathematical approach of ray-tracing and genetic algorithm for optimizing indoor wireless coverage," Progress In Electromagnetics Research, Vol. 110, 147-162, 2010.
doi:10.2528/PIER10091701 Google Scholar
21. Liu, Z.-Y. and L.-X. Guo, "A quasi three-dimensional ray tracing method based on the virtual source tree in urban microcellular environments," Progress In Electromagnetics Research, Vol. 118, 397-414, 2011.
doi:10.2528/PIER11041602 Google Scholar
22. Sarker, M. S., A. W. Reza, and K. Dimyati, "A novel ray-tracing technique for indoor radio signal prediction," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8-9, 1179-1190, 2011.
doi:10.1163/156939311795762222 Google Scholar
23. Kowal, M., "The performance of the MIMO-OFDM radio interface in presence of interferences,", Ph.D. dissertation, Wroclaw University of Technology, Wroclaw, Poland, 2011. Google Scholar
24. Kowal, M., S. Kubal, P. Piotrowski, and R. Zielinki, "A simulation model of the radio frequency MIMO-OFDM system," International Journal of Electronics and Telecommunications, Vol. 57, No. 3, 323-328, 2011.
doi:10.2478/v10177-011-0043-6 Google Scholar
25. Erceg, V., L. Schumacher, and P. Kyritsi, "TGn channel models,", IEEE 802.11-03/940r4, May 10, 2004. Google Scholar
26. Kara, A., "Human body shadowing variability in short range indoor radio links at 3-11 GHz," Int. Journal of Electronics, Vol. 96, 205-211, 2009.
doi:10.1080/00207210802524302 Google Scholar
27. Cotton, S. L., et al., "An experimental study on the impact of human body shadowing in off-body communications channels at 2.45 GHz," Proc. 5th European Conference on Antennas and Propagation (EUCAP), 3133-3137, 2011. Google Scholar
28. Cheffena, M., "Physical-statistical channel model for signal effect by moving human bodies," EURASIP Journal on Wireless Communications and Networking, Vol. 2012, 77, 2012.
doi:10.1186/1687-1499-2012-77 Google Scholar
29. Kara, A. and E. Yazgan, "Modelling of shadowing loss for huge non-polygonal structures in urban radio propagation," Progress In Electromagnetic Research B, Vol. 6, 123-134, 2008.
doi:10.2528/PIERB08031209 Google Scholar
30. Li, Q., M. Ho, V. Erceg, A. Janganntham, and N. Tal, "802.11n channel model validation,", IEEE 802.11-03/894r1, Nov. 2003. Google Scholar
31. Saleh, A. A. M. and R. A. Valenzuela, "A statistical model for indoor multipath propagation," IEEE Journal of Selected Areas in Communications, Vol. 5, 128-137, 1987.
doi:10.1109/JSAC.1987.1146527 Google Scholar
32. Medbo, J. and P. Schramm, "Channel models for HIPERLAN/2,", ETSI/BRAN Document No. 3ERI085B, 1998. Google Scholar
33. ITU, ITU-R F.1191-3, "Necessary and occupied bandwidths and unwanted emissions of digital fixed service systems,", May 2011. Google Scholar