Vol. 137
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-07
Broadband Modified Rectangular Microstrip Patch Antenna Using Stepped Cut at Four Corners Method
By
Progress In Electromagnetics Research, Vol. 137, 599-619, 2013
Abstract
In this paper, a new method that called the ``Stepped Cut at Four Corners'' is introduced to design a multi-mode/broadband modified rectangular microstrip patch antennas (MRMPAs). In order to become acquainted with the new method, the design process of a monopole broadband MRMPA suitable for multifunctional wireless communication bands is explained. The methodology of the proposed broadband MRMPA design is presented in six stages. The first stage is designing a single-mode RMPA. Subsequently, by creating a step at the corners using the proposed method a dual-mode antenna is obtained at the second stage, while the triple-mode and multi-mode antennas are designed, at the third and fourth stages respectively. Two types of broadband antennas are obtained, the stepped line and straight line antennas. By increasing the number of steps, the antenna's operating bandwidth (BW), with return loss less than −10 dB, covers the frequency range from 900 MHz to 2.6 GHZ, which is suitable for GSM (900 MHz and 1.5 GHz), WiFi (2.4 GHz) and LTE (2.6 GHz) applications. In addition, the antenna prototype has been fabricated and measured in the all stages, in order to validate the simulation results, and there is a close agreement between the simulated and measured results.
Citation
Alireza Moradi Tharek Bin Abdul Rahman , "Broadband Modified Rectangular Microstrip Patch Antenna Using Stepped Cut at Four Corners Method," Progress In Electromagnetics Research, Vol. 137, 599-619, 2013.
doi:10.2528/PIER13011714
http://www.jpier.org/PIER/pier.php?paper=13011714
References

1. Milligan, T. A., Modern Antenna Design, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.
doi:10.1002/0471720615

2. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, 2003.
doi:10.1109/APS.1983.1149060

3. Islam, M. T., M. N. Shakib, and N. Misran, "Broadband E-H shaped microstrip patch antenna for wireless systems," Progress In Electromagnetics Research, Vol. 98, 163-173, 2009.
doi:10.2528/PIER09082302

4. Pouyanfar, N. and S. A. Rezaeieh, "Compact UWB antenna with inverted hat shaped resonator and shortening via pins for filtering properties," Progress In Electromagnetics Research Letters, Vol. 33, 187-196, 2012.

5. Abbaspour, M. and H. R. Hassani, "Wideband star-shaped microstrip patch antenna," Progress In Electromagnetics Research Letters, Vol. 1, 61-68, 2008.
doi:10.2528/PIERL07111505

6. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.

7. Kim, D.-O., N.-I. Jo, H.-A. Jang, and C.-Y. Kim, "Design of the ultrawideband antenna with a quadruple-band rejection characteristics using a combination of the complementary split ring resonators," Progress In Electromagnetics Research, Vol. 112, 93-107, 2011.

8. Saleem, R. and A. K. Brown, "Empirical miniaturization analysis of inverse parabolic step sequence based UWB antennas," Progress In Electromagnetics Research, Vol. 114, 369-381, 2011.

9. Chen, Z., Y. L. Ban, J. H. Chen, J. L. W. Li, and Y. J. Wu, "Bandwidth enhancement of LTE/WWAN printed mobile phone antenna using slotted ground structure," Progress In Electromagnetics Research, Vol. 129, 469-483, 2012.

10. Lin, D. B., I. T. Tang, and M. Z. Hong, "A compact quad-band PIFA by tuning the defected ground structure for mobile phones," Progress In Electromagnetics Research B, Vol. 24, 173-189, 2010.
doi:10.2528/PIERB10070608

11. Li, C. M. and L. H. Ye, "Improved dual band-notched UWB slot antenna with controllable notched bandwidths," Progress In Electromagnetics Research, Vol. 115, 477-493, 2011.

12. Zhou, D., S.-C. S. Gao, F. Zhu, R. A. Abd-Alhameed, and J.-D. Xu, "A simple and compact planar ultra wideband antenna with single or dual band-notched characteristics," Progress In Electromagnetics Research, Vol. 123, 47-65, 2012.
doi:10.2528/PIER11101104

13. Liu, J., K. P. Esselle, S. G. Hay, and S.-S. Zhong, "Study of an extremely wideband monopole antenna with triple band-notched characteristics," Progress In Electromagnetics Research, Vol. 123, 143-158, 2012.
doi:10.2528/PIER11110401

14. Lamultree, S. and C. Phongcharoenpanich, "Bidirectional ultra-wideband antenna using rectangular ring fed by stepped monopole," Progress In Electromagnetics Research, Vol. 85, 227-242, 2008.
doi:10.2528/PIER08080103

15. Yu, A., F. Yang, and A. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902

16. Chen, Y., S. Yang, and Z.-P. Nie, "A novel wideband antenna array with tightly coupled octagonal ring elements," Progress In Electromagnetics Research, Vol. 124, 55-70, 2012.
doi:10.2528/PIER11121312

17. Pues, H. G. and A. R. Van De Capelle, "An impedance matching technique for increasing the bandwidth of microstrip antennas," IEEE Trans. Antennas and Propagation, Vol. 37, No. 11, 1345-1354, 1989.
doi:10.1109/8.43553

18. Wong, K. L. and T. W. Kang, "GSM850/900/1800/1900/UMTS printed monopole antenna for mobile phone application," Microwave Opt. Technol. Lett., Vol. 50, 3192-3198, 2008.
doi:10.1002/mop.23936

19. Ban, Y. L., J. H. Chen, L. J. Ying, J. L. W. Li, and Y. J. Wu, "Ultra wideband antenna for LTE/GSM/UMTS wireless USB dongle applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 403-406, 2012.

20. Islam, M. T., R. Azim, and A. T. Mobashsher, "Triple band-notched planar UWB antenna using parasitic strips," Progress In Electromagnetics Research, Vol. 129, 161-179, 2012.

21. Gujra, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807

22. Deng, J., L. Guo, T. Fan, Z. Wu, Y. Hu, and J. Yang, "Wideband circularly polarized suspended patch antenna with indented edge and gap-coupled feed," Progress In Electromagnetics Research, Vol. 135, 151-159, 2013.

23. Alvarez-Folgueiras, M., J. A. Rodriguez-Gonzalez, and F. Ares-Pena, "Experimental results on a planar array of parasitic dipoles fed by one active element," Progress In Electromagnetics Research, Vol. 113, 369-377, 2011.

24. Zhu, F., S.-C. S. Gao, A. T. S. Ho, C. H. See, R. A. Abd-Alhameed, J. Li, and J.-D. Xu, "Design and analysis of planar ultra-wideb and antenna with dual band-notched function," Progress In Electromagnetics Research, Vol. 127, 523-536, 2012.
doi:10.2528/PIER12033105

25. Chang, T. N. and J. H. Jiang, "Enhance gain and bandwidth of circularly polarized microstrip patch antenna using gap-coupled method," Progress In Electromagnetics Research, Vol. 96, 127-139, 2009.
doi:10.2528/PIER09081010

26. Elsheakh, D. N., H. A. Elsadek, and E. A. Abdallah, "Ultra-wide bandwidth microstrip monopole antenna by using electromagnetic band-gap structures," Progress In Electromagnetics Research Letters, Vol. 23, 109-118, 2011.

27. Zulkifli, F. Y., F. Narpati, and E. T. Rahardjo, "S-shaped patch antenna fed by dual offset electromagnetically coupled for 5-6 GHz high speed network," PIERS Online, Vol. 3, No. 2, 163-166, 2007.
doi:10.2529/PIERS060801042546

28. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

29. Zhao, F., K. Xiao, W. J. Feng, S. L. Chai, and J. J. Mao, "Design and manufacture of the wideband aperture-coupled stacked microstrip antenna," Progress In Electromagnetics Research C, Vol. 7, 37-50, 2009.
doi:10.2528/PIERC09021801

30. Lai, C. H., "Broadband aperture-coupled microstrip antennas with low cross polarization and back radiation," Progress In Electromagnetics Research Letters, Vol. 5, 187-197, 2008.
doi:10.2528/PIERL08111805

31. Lien, H. C., H. C. Tsai, Y. Lee, and W. F. Lee, "A circular polarization microstrip stacked structure broadband antenna," PIERS Online, Vol. 4, No. 2, 259-262, 2008.
doi:10.2529/PIERS070726103206

32. Ollikainen, J., M. Fischer, and P. Vainikainen, "Thin dual-resonant stacked shorted patch antenna for mobile communications," Electronics Letters, Vol. 35, 437-438, 1999.
doi:10.1049/el:19990324

33. Zaid, L., G. Kossiavas, J. Y. Dauvignac, J. Cazajous, and A. Papiernik, "Dual-frequency and broad-band antennas with stacked quarter wavelength elements," IEEE Trans. Antennas and Propagation, Vol. 47, No. 4, 654-660, 1999.
doi:10.1109/8.768804

34. Chen, Y., S. Yang, and Z. Nie, "Bandwidth enhancement method for low profile E-shaped microstrip patch antennas," IEEE Trans. Antennas and Propagation, Vol. 58, No. 7, 2442-2447, 2010.
doi:10.1109/TAP.2010.2048850

35. Bahal, I. J. and P. Bhartia, Microstrip Antenna, Artech House, Massachusetts, 1980.

36. Pozar, D. M. and D. H. Schaubert, Microstrip Antennas, the Analysis and Design of Microstrip Antennas and Arrays, IEEE Press, New York, 1995.

37. Chen, Y. and C. F. Wang, "Characteristic-mode-based improve-ment of circularly polarized U-slot and E-shaped patch antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1474-1477, 2012.
doi:10.1109/LAWP.2012.2231046

38. Wu, W. and Y. P. Zhang, "Analysis of ultra-wideband printed planar quasi-monopole antennas using the theory of characteristic modes," IEEE Antennas Propag. Mag., Vol. 52, No. 6, 67-77, 2010.
doi:10.1109/MAP.2010.5723225