1. Milligan, T. A., Modern Antenna Design, John Wiley & Sons, Inc., Hoboken, New Jersey, 2005.
doi:10.1002/0471720615
2. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, 2003.
doi:10.1109/APS.1983.1149060
3. Islam, M. T., M. N. Shakib, and N. Misran, "Broadband E-H shaped microstrip patch antenna for wireless systems," Progress In Electromagnetics Research, Vol. 98, 163-173, 2009.
doi:10.2528/PIER09082302 Google Scholar
4. Pouyanfar, N. and S. A. Rezaeieh, "Compact UWB antenna with inverted hat shaped resonator and shortening via pins for filtering properties," Progress In Electromagnetics Research Letters, Vol. 33, 187-196, 2012. Google Scholar
5. Abbaspour, M. and H. R. Hassani, "Wideband star-shaped microstrip patch antenna," Progress In Electromagnetics Research Letters, Vol. 1, 61-68, 2008.
doi:10.2528/PIERL07111505 Google Scholar
6. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011. Google Scholar
7. Kim, D.-O., N.-I. Jo, H.-A. Jang, and C.-Y. Kim, "Design of the ultrawideband antenna with a quadruple-band rejection characteristics using a combination of the complementary split ring resonators," Progress In Electromagnetics Research, Vol. 112, 93-107, 2011. Google Scholar
8. Saleem, R. and A. K. Brown, "Empirical miniaturization analysis of inverse parabolic step sequence based UWB antennas," Progress In Electromagnetics Research, Vol. 114, 369-381, 2011. Google Scholar
9. Chen, Z., Y. L. Ban, J. H. Chen, J. L. W. Li, and Y. J. Wu, "Bandwidth enhancement of LTE/WWAN printed mobile phone antenna using slotted ground structure," Progress In Electromagnetics Research, Vol. 129, 469-483, 2012. Google Scholar
10. Lin, D. B., I. T. Tang, and M. Z. Hong, "A compact quad-band PIFA by tuning the defected ground structure for mobile phones," Progress In Electromagnetics Research B, Vol. 24, 173-189, 2010.
doi:10.2528/PIERB10070608 Google Scholar
11. Li, C. M. and L. H. Ye, "Improved dual band-notched UWB slot antenna with controllable notched bandwidths," Progress In Electromagnetics Research, Vol. 115, 477-493, 2011. Google Scholar
12. Zhou, D., S.-C. S. Gao, F. Zhu, R. A. Abd-Alhameed, and J.-D. Xu, "A simple and compact planar ultra wideband antenna with single or dual band-notched characteristics," Progress In Electromagnetics Research, Vol. 123, 47-65, 2012.
doi:10.2528/PIER11101104 Google Scholar
13. Liu, J., K. P. Esselle, S. G. Hay, and S.-S. Zhong, "Study of an extremely wideband monopole antenna with triple band-notched characteristics," Progress In Electromagnetics Research, Vol. 123, 143-158, 2012.
doi:10.2528/PIER11110401 Google Scholar
14. Lamultree, S. and C. Phongcharoenpanich, "Bidirectional ultra-wideband antenna using rectangular ring fed by stepped monopole," Progress In Electromagnetics Research, Vol. 85, 227-242, 2008.
doi:10.2528/PIER08080103 Google Scholar
15. Yu, A., F. Yang, and A. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902 Google Scholar
16. Chen, Y., S. Yang, and Z.-P. Nie, "A novel wideband antenna array with tightly coupled octagonal ring elements," Progress In Electromagnetics Research, Vol. 124, 55-70, 2012.
doi:10.2528/PIER11121312 Google Scholar
17. Pues, H. G. and A. R. Van De Capelle, "An impedance matching technique for increasing the bandwidth of microstrip antennas," IEEE Trans. Antennas and Propagation, Vol. 37, No. 11, 1345-1354, 1989.
doi:10.1109/8.43553 Google Scholar
18. Wong, K. L. and T. W. Kang, "GSM850/900/1800/1900/UMTS printed monopole antenna for mobile phone application," Microwave Opt. Technol. Lett., Vol. 50, 3192-3198, 2008.
doi:10.1002/mop.23936 Google Scholar
19. Ban, Y. L., J. H. Chen, L. J. Ying, J. L. W. Li, and Y. J. Wu, "Ultra wideband antenna for LTE/GSM/UMTS wireless USB dongle applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 403-406, 2012. Google Scholar
20. Islam, M. T., R. Azim, and A. T. Mobashsher, "Triple band-notched planar UWB antenna using parasitic strips," Progress In Electromagnetics Research, Vol. 129, 161-179, 2012. Google Scholar
21. Gujra, M., J. L.-W. Li, T. Yuan, and C.-W. Qiu, "Bandwidth improvement of microstrip antenna array using dummy EBG pattern on feedline," Progress In Electromagnetics Research, Vol. 127, 79-92, 2012.
doi:10.2528/PIER12022807 Google Scholar
22. Deng, J., L. Guo, T. Fan, Z. Wu, Y. Hu, and J. Yang, "Wideband circularly polarized suspended patch antenna with indented edge and gap-coupled feed," Progress In Electromagnetics Research, Vol. 135, 151-159, 2013. Google Scholar
23. Alvarez-Folgueiras, M., J. A. Rodriguez-Gonzalez, and F. Ares-Pena, "Experimental results on a planar array of parasitic dipoles fed by one active element," Progress In Electromagnetics Research, Vol. 113, 369-377, 2011. Google Scholar
24. Zhu, F., S.-C. S. Gao, A. T. S. Ho, C. H. See, R. A. Abd-Alhameed, J. Li, and J.-D. Xu, "Design and analysis of planar ultra-wideb and antenna with dual band-notched function," Progress In Electromagnetics Research, Vol. 127, 523-536, 2012.
doi:10.2528/PIER12033105 Google Scholar
25. Chang, T. N. and J. H. Jiang, "Enhance gain and bandwidth of circularly polarized microstrip patch antenna using gap-coupled method," Progress In Electromagnetics Research, Vol. 96, 127-139, 2009.
doi:10.2528/PIER09081010 Google Scholar
26. Elsheakh, D. N., H. A. Elsadek, and E. A. Abdallah, "Ultra-wide bandwidth microstrip monopole antenna by using electromagnetic band-gap structures," Progress In Electromagnetics Research Letters, Vol. 23, 109-118, 2011. Google Scholar
27. Zulkifli, F. Y., F. Narpati, and E. T. Rahardjo, "S-shaped patch antenna fed by dual offset electromagnetically coupled for 5-6 GHz high speed network," PIERS Online, Vol. 3, No. 2, 163-166, 2007.
doi:10.2529/PIERS060801042546 Google Scholar
28. Zhou, B., H. Li, X. Zou, and T.-J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011. Google Scholar
29. Zhao, F., K. Xiao, W. J. Feng, S. L. Chai, and J. J. Mao, "Design and manufacture of the wideband aperture-coupled stacked microstrip antenna," Progress In Electromagnetics Research C, Vol. 7, 37-50, 2009.
doi:10.2528/PIERC09021801 Google Scholar
30. Lai, C. H., "Broadband aperture-coupled microstrip antennas with low cross polarization and back radiation," Progress In Electromagnetics Research Letters, Vol. 5, 187-197, 2008.
doi:10.2528/PIERL08111805 Google Scholar
31. Lien, H. C., H. C. Tsai, Y. Lee, and W. F. Lee, "A circular polarization microstrip stacked structure broadband antenna," PIERS Online, Vol. 4, No. 2, 259-262, 2008.
doi:10.2529/PIERS070726103206 Google Scholar
32. Ollikainen, J., M. Fischer, and P. Vainikainen, "Thin dual-resonant stacked shorted patch antenna for mobile communications," Electronics Letters, Vol. 35, 437-438, 1999.
doi:10.1049/el:19990324 Google Scholar
33. Zaid, L., G. Kossiavas, J. Y. Dauvignac, J. Cazajous, and A. Papiernik, "Dual-frequency and broad-band antennas with stacked quarter wavelength elements," IEEE Trans. Antennas and Propagation, Vol. 47, No. 4, 654-660, 1999.
doi:10.1109/8.768804 Google Scholar
34. Chen, Y., S. Yang, and Z. Nie, "Bandwidth enhancement method for low profile E-shaped microstrip patch antennas," IEEE Trans. Antennas and Propagation, Vol. 58, No. 7, 2442-2447, 2010.
doi:10.1109/TAP.2010.2048850 Google Scholar
35. Bahal, I. J. and P. Bhartia, Microstrip Antenna, Artech House, Massachusetts, 1980.
36. Pozar, D. M. and D. H. Schaubert, Microstrip Antennas, the Analysis and Design of Microstrip Antennas and Arrays, IEEE Press, New York, 1995.
37. Chen, Y. and C. F. Wang, "Characteristic-mode-based improve-ment of circularly polarized U-slot and E-shaped patch antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1474-1477, 2012.
doi:10.1109/LAWP.2012.2231046 Google Scholar
38. Wu, W. and Y. P. Zhang, "Analysis of ultra-wideband printed planar quasi-monopole antennas using the theory of characteristic modes," IEEE Antennas Propag. Mag., Vol. 52, No. 6, 67-77, 2010.
doi:10.1109/MAP.2010.5723225 Google Scholar