1. Irahhauten, Z., H. Nikookar, and G. J. M. Janssen, "An overview of ultra wide band indoor channel measurements and modeling," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 8, 386-388, 2004.
doi:10.1109/LMWC.2004.832620 Google Scholar
2. Ghaddar, M., L. Talbi, and G. Y. Delisle, "Coherence bandwidth measurement in indoor broadband propagation channel at unlicensed 60 GHz band," Electronics Letters, Vol. 48, No. 13, 795-797, 2012.
doi:10.1049/el.2012.0397 Google Scholar
3. Santos, T., J. Karedal, P. Almers, et al. "Modeling the ultra-wideband outdoor channel: Measurements and parameter extraction method," IEEE Trans. on Wireless Communications, Vol. 9, No. 1, 282-291, 2010.
doi:10.1109/TWC.2010.01.090391 Google Scholar
4. Taha-Ahmed, B., D. F. Campillo, and J. L. Masa-Campos, "Short range propagation model for a very wideband directive channel at 5.5 GHz band," Progress In Electromagnetics Research, Vol. 130, 319-346, 2012. Google Scholar
5. Li, B., Z. Zhou, D. Li, and S. Zhai, "Efficient cluster identification for measured ultra-wideband channel impulse response in vehicle cabin," Progress In Electromagnetics Research, Vol. 117, 121-147, 2011. Google Scholar
6. Chen, Z. and Y.-P. Zhang, "Effects of antennas and propagation channels on synchronization performance of a pulse-based ultra-wideband radio system," Progress In Electromagnetics Research, Vol. 115, 95-112, 2011. Google Scholar
7. Dezfooliyan, A. and A. M. Weiner, "Evaluation of time domain propagation measurements of UWB systems using spread spectrum channel sounding," IEEE Trans. on Antennas and Propagation, Vol. 60, No. 10, 4855-4865, 2012.
doi:10.1109/TAP.2012.2207358 Google Scholar
8. Sesnic, S., D. Poljak, and S. V. Tkachenko, "Time domain analytical modeling of a straight thin wire buried in a lossy medium," Progress In Electromagnetics Research, Vol. 121, 485-504, 2011.
doi:10.2528/PIER11072109 Google Scholar
9. Siamarou, A. G. and M. Al-Nuaimi, "A wideband frequency-domain channel-sounding system and delay-spread measurements at the license-free 57- to 64-GHz band," IEEE Trans. on Instrumentation and Measurement, Vol. 59, No. 3, 519-526, 2010.
doi:10.1109/TIM.2009.2023105 Google Scholar
10. Podwalski, J., P. Kowalczyk, and M. Mrozowski, "Efficient multiscale finite difference frequency domain analysis using multiple macromodels with compressed boundaries," Progress In Electromagnetics Research, Vol. 126, 463-479, 2012.
doi:10.2528/PIER12012008 Google Scholar
11. Kunisch, J., I. de la Torre, A. Winkelmann, et al. "Wideband time-variant air-to-ground radio channel measurements at 5 GHz," Proceedings of the 5th European Conference on Antennas and Propagation, 1386-1390, Italy, 2011. Google Scholar
12. Matolak, D. W., I. Sen, and W. Xiong, "The 5-GHz airport surface area channel - Part I: Measurement and modeling results for large airports," IEEE Trans. on Vehicular Technology, Vol. 57, No. 4, 2014-2026, 2008.
doi:10.1109/TVT.2007.912334 Google Scholar
13. Sen, I. and D. W. Matolak, "The 5-GHz airport surface area channel - Part II: Measurement and modeling results for small airports," IEEE Trans. on Vehicular Technology, Vol. 57, No. 4, 2027-2035, 2008.
doi:10.1109/TVT.2007.912335 Google Scholar
14. Diaz, N. R. and J. E. J. Esquitino, "Wideband channel characterization for wireless communications inside a short haul aircraft," IEEE Vehicular Technology Conference, 223-228, Italy, 2004. Google Scholar
15. Fernandez, O., R. Jaramillo, M. Domingo, et al. "Characterization and modeling of BFWA channels in outdoor-indoor environments," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 236-239, 2010. Google Scholar
16. Yu, S. M. and H. L. Yee, "Measurements and characterizations of air-to-ground channel over sea surface at C-band with low airborne altitudes," IEEE Trans. on Vehicular Technology, Vol. 60, No. 4, 1943-1948, 2011.
doi:10.1109/TVT.2011.2136364 Google Scholar
17. Nie, D., M. Zhang, X. Geng, and P. Zhou, "Investigation on doppler spectral characteristics of electromagnetic backscattered echoes from dynamic nonlinear surfaces of finite-depth sea," Progress In Electromagnetics Research, Vol. 130, 169-186, 2012. Google Scholar
18. Zhang, J.-P., Z.-S. Wu, Y.-S. Zhang, and B. Wang, "Evaporation duct retrieval using changes in radar sea clutter power versus receiving height," Progress In Electromagnetics Research, Vol. 126, 555-571, 2012.
doi:10.2528/PIER11121307 Google Scholar