Vol. 138
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-25
Transmission Tunneling through the Multilayer Double-Negative and Double-Positive Slabs
By
Progress In Electromagnetics Research, Vol. 138, 293-306, 2013
Abstract
Transmission tunneling properties and frequency response of multilayer structure are theoretically presented by using transfer matrix method. The structure is composed of double-negative and double-positive slabs which is sandwiched between two semi-infinite free space regions. Double-negative layers are realized by using Lorenz- and Drude-medium parameters. The transmission characteristics of the proposed multilayer structure based on the constitutive parameters, dispersion, and loss are analyzed in detail. Finally, the computations of the transmittance for multilayer structure are presented in numerical results. It can be seen from the numerical results that the multilayer structure can be used to design efficient filters and sensors for several frequency regions.
Citation
Cumali Sabah, Haci Tugrul Tastan, Furkan Dincer, Kemal Delihacioglu, Muharrem Karaaslan, and Emin Unal, "Transmission Tunneling through the Multilayer Double-Negative and Double-Positive Slabs," Progress In Electromagnetics Research, Vol. 138, 293-306, 2013.
doi:10.2528/PIER13013110
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of epsilon and mu," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699        Google Scholar

2. Pendry, , J. B., A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773- 4776, 1996.
doi:10.1103/PhysRevLett.76.4773        Google Scholar

3. Pendry, , J. B., A. J. Hollen, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors, and enhanced non-linear phenomena," IEEE Trans. on Microw. Theory and Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002        Google Scholar

4. Shelby, , R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847        Google Scholar

5. Fu, , C. J., Z. M. Zhang, and D. B. Tanner, "Energy transmission by photon tunneling in multilayer structures including negative index materials," ASME J. Heat Transf.,, Vol. 127, 1046-1052, 2005.
doi:10.1115/1.2010495        Google Scholar

6. Zhang, , Z. M., C. J. Fu, and , "Unusual photon tunneling in the presence of a layer with a negative refractive index," Appl. Phys. Lett., Vol. 80, 1097-1099, 2002.
doi:10.1063/1.1448172        Google Scholar

7. Sabah, , C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605        Google Scholar

8. Sabah, C., H. G. Roskos, and , "Broadside-coupled triangular split-ring-resonators for terahertz sensing," Eur. Phys. J. --- Appl. Phys., Vol. 61, 30402, 2013.
doi:10.1051/epjap/2013120053        Google Scholar

9. Edwards, , B., A. Alu, M. Silveirinha, and N. Engheta, "Comparison between e-near-zero and fabry-perot resonant transmission through waveguide bends and channels," XXIX URSI General Assembly, 2008.        Google Scholar

10. Luo, Z., Z. Tang, Y. Xiang, H. Luo, and S. Wen, "Polarization-independent low-pass spatial filters based on one-dimensional photonic crystals containing negative-index materials," Appl. Phys. Lett. B, Vol. 94, 641-646, 2009.
doi:10.1007/s00340-009-3376-4        Google Scholar

11. Butler, C. A. M., I. R. Hooper, A. P. Hibbins, J. R. Sambles, and P. A. Hobson, "Metamaterial tunnel barrier gives broadband microwave transmission ," J. Appl. Phys., Vol. 109, 013104, , 2011.
doi:10.1063/1.3525557        Google Scholar

12. Zhou, X., G. Hu, and , "Total transmission condition for photon tunneling in a layered structure with metamaterials," J. Opt. A: Pure Appl. Opt., Vol. 9, 60-65, 2007..
doi:10.1088/1464-4258/9/1/011        Google Scholar

13. Sabah, , C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306        Google Scholar

14. Sabah, C., G. Ogucu, and S. Uckun, "Reflected and transmitted powers of electromagnetic wave through a double-negative slab," J. Optoelectron. Adv. Mater., Vol. 8, 1925-1930, 2006.        Google Scholar

15. Sabah, C., S. Uckun, and , "Electromagnetic wave propagation through frequency-dispersive and lossy double-negative slab," Opto.-Electron. Rev., Vol. 15, 133-143, 2007.
doi:10.2478/s11772-007-0011-y        Google Scholar

16. Liu, L., C. Hu, Z. Zhao, and X. Luo, "Multi-passband tunneling effect in multilayered epsilon-near-zero metamaterials," Opt. Express, Vol. 17, 12183-12188, 2009.
doi:10.1364/OE.17.012183        Google Scholar

17. Sabah, C., "Effects of loss factor on plane wave propagation through a left-handed material slab," Acta Phys. Pol. A, Vol. 113, 1589-1597, 2008.        Google Scholar

18. Ding, , Y., Y. Li, H. Jiang, and H. Chen, , "Electromagnetic tunneling in nonconjugated epsilon-negative and mu-negative metamaterial pair," PIERS Online, Vol. 6, 109-112, 2010.
doi:10.2529/PIERS091004104845        Google Scholar

19. Liu, N., H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and and, "Three-dimensional photonic metamaterials at optical frequencies," Nature Materials, Vol. 7, 31-37, 2008.
doi:10.1038/nmat2072        Google Scholar

20. Liu, , N., H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nature Photonics, Vol. 3, 157-162, 2009.
doi:10.1038/nphoton.2009.4        Google Scholar

21. Reiten, , M. T., D. Roy Chowdhury, J. Zhou, J. F. O'Hara, and A. K. Azad, "Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials," Appl. Phys. Lett.,, Vol. 98, 131105, 2011.
doi:10.1063/1.3566978        Google Scholar

22. Zhou, , J., D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O'Hara, "Terahertz chiral metamaterials with giant and dynamically tunable optical activity," Physical Review B , Vol. 86, , 035448, 2012.
doi:10.1103/PhysRevB.86.035448        Google Scholar

23. Huang, , L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research,, Vol. 113, 103-110, 2011.        Google Scholar

24. Liu, , S.-H., L.-X. Guo, and , "Negative refraction in an anisotropic metamaterial with a rotation angle between the principal axis and the planar interface," Progress In Electromagnetics Research, Vol. 115, 243-257, 2011.        Google Scholar

25. Li, , J., F.-Q. Yang, and J.-F. Dong, , "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.        Google Scholar

26. Canto, , J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011.        Google Scholar

28. Giamalaki, M. I., I. S. Karanasiou, and , "Enhancement of a microwave radiometry imaging system's performance using left handed materials," Progress In Electromagnetics Research,, Vol. 117, 253-265, 2011.        Google Scholar

28. Xu, , S., L. Yang, L. Huang, and H. Chen, "Experimental measurement method to determine the permittivity of extra thin materials using resonant metamaterials," Progress In Electromagnetics Research, Vol. 120, 327-337, 2011.        Google Scholar

29. Duan, , Z., Y. Wang, X. Mao, W.-X. Wang, and M. Chen, "Experimental demonstration of double-negative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.
doi:10.2528/PIER11090502        Google Scholar

30. Navarro-Cia, M., V. Torres, M. Beruete, and M. Sorolla, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetics Research, Vol. 118, 287-301, 2011..
doi:10.2528/PIER11053105        Google Scholar

31. Sabah, C. and Multiband planar metamaterials, "Microwave and Optical Technology Letters,", Vol. 53, 2255- 2258, 2011.        Google Scholar

32. Cao, T. and M. J. Cryan, "Modeling of optical trapping using double negative index fishnet metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012.        Google Scholar

33. Hasar, , U. C., J. J. Barroso, M. Ertugrul, C. Sabah, and B. Cavusoglu, "Application of a useful uncertainty analysis as a metric tool for assessing the performance of electromagnetic properties retrieval methods of bianisotropic metamaterials," Progress In Electromagnetics Research, Vol. 128, 365-380, 2012.        Google Scholar

34. Hasar, , U. C., J. J. Barroso, C. Sabah, and Y. Kaya, "Resolving phase ambiguity in the inverse problem of reflection-only measurement methods," Progress In Electromagnetics Research, Vol. 129, 405-420, 2012.        Google Scholar

35. Hasar, , U. C., J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, "Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions," Progress In Electromagnetics Research, Vol. 132, 425- 441, 2012.        Google Scholar

36. Sabah, C., "Electric and magnetic excitations broadside-coupled triangular-split-ring resonators," Appl. Phys. A --- | Mater. Sci. Process., Vol. 108, 457-463, 2012.
doi:10.1080/09205071.2012.710537        Google Scholar

37. Sabah, , C., , "Multi-resonant metamaterial design based on concentric V-shaped magnetic resonators," Journal of Electromagnetic Waves and Applications,, Vol. 26, No. 8--9, 1105-1115, 2012.
doi:10.1016/j.optcom.2012.06.043        Google Scholar

38. Sabah, C., "Microwave response of octagon-shaped Low-loss metamaterial," Optics Communications, Vol. 285, 4549-4552, 2012.        Google Scholar

39. Sabah, , C., "Multiband metamaterials based on multiple concentric open ring resonators topology," IEEE J. Sel. Top. Quantum Electron., Vol. 19, 850080, 2013.        Google Scholar

40. Sabah, C., "Analysis, applications, and a novel design of double negative metamaterials," Ph.D. Thesis, Gaziantep University, 2008.        Google Scholar

41. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University, online book, 2004.

42. Sabah, C., "Transmission line modeling method for planar boundaries containing positive and negative index media," IEEE MMET'08 Conference Proceedings, , 2008.        Google Scholar