1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of epsilon and mu," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Pendry, , J. B., A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773- 4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
3. Pendry, , J. B., A. J. Hollen, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors, and enhanced non-linear phenomena," IEEE Trans. on Microw. Theory and Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
4. Shelby, , R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
5. Fu, , C. J., Z. M. Zhang, and D. B. Tanner, "Energy transmission by photon tunneling in multilayer structures including negative index materials," ASME J. Heat Transf.,, Vol. 127, 1046-1052, 2005.
doi:10.1115/1.2010495 Google Scholar
6. Zhang, , Z. M., C. J. Fu, and , "Unusual photon tunneling in the presence of a layer with a negative refractive index," Appl. Phys. Lett., Vol. 80, 1097-1099, 2002.
doi:10.1063/1.1448172 Google Scholar
7. Sabah, , C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605 Google Scholar
8. Sabah, C., H. G. Roskos, and , "Broadside-coupled triangular split-ring-resonators for terahertz sensing," Eur. Phys. J. --- Appl. Phys., Vol. 61, 30402, 2013.
doi:10.1051/epjap/2013120053 Google Scholar
9. Edwards, , B., A. Alu, M. Silveirinha, and N. Engheta, "Comparison between e-near-zero and fabry-perot resonant transmission through waveguide bends and channels," XXIX URSI General Assembly, 2008. Google Scholar
10. Luo, Z., Z. Tang, Y. Xiang, H. Luo, and S. Wen, "Polarization-independent low-pass spatial filters based on one-dimensional photonic crystals containing negative-index materials," Appl. Phys. Lett. B, Vol. 94, 641-646, 2009.
doi:10.1007/s00340-009-3376-4 Google Scholar
11. Butler, C. A. M., I. R. Hooper, A. P. Hibbins, J. R. Sambles, and P. A. Hobson, "Metamaterial tunnel barrier gives broadband microwave transmission ," J. Appl. Phys., Vol. 109, 013104, , 2011.
doi:10.1063/1.3525557 Google Scholar
12. Zhou, X., G. Hu, and , "Total transmission condition for photon tunneling in a layered structure with metamaterials," J. Opt. A: Pure Appl. Opt., Vol. 9, 60-65, 2007..
doi:10.1088/1464-4258/9/1/011 Google Scholar
13. Sabah, , C. and S. Uckun, "Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
doi:10.2528/PIER09031306 Google Scholar
14. Sabah, C., G. Ogucu, and S. Uckun, "Reflected and transmitted powers of electromagnetic wave through a double-negative slab," J. Optoelectron. Adv. Mater., Vol. 8, 1925-1930, 2006. Google Scholar
15. Sabah, C., S. Uckun, and , "Electromagnetic wave propagation through frequency-dispersive and lossy double-negative slab," Opto.-Electron. Rev., Vol. 15, 133-143, 2007.
doi:10.2478/s11772-007-0011-y Google Scholar
16. Liu, L., C. Hu, Z. Zhao, and X. Luo, "Multi-passband tunneling effect in multilayered epsilon-near-zero metamaterials," Opt. Express, Vol. 17, 12183-12188, 2009.
doi:10.1364/OE.17.012183 Google Scholar
17. Sabah, C., "Effects of loss factor on plane wave propagation through a left-handed material slab," Acta Phys. Pol. A, Vol. 113, 1589-1597, 2008. Google Scholar
18. Ding, , Y., Y. Li, H. Jiang, and H. Chen, , "Electromagnetic tunneling in nonconjugated epsilon-negative and mu-negative metamaterial pair," PIERS Online, Vol. 6, 109-112, 2010.
doi:10.2529/PIERS091004104845 Google Scholar
19. Liu, N., H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and and, "Three-dimensional photonic metamaterials at optical frequencies," Nature Materials, Vol. 7, 31-37, 2008.
doi:10.1038/nmat2072 Google Scholar
20. Liu, , N., H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nature Photonics, Vol. 3, 157-162, 2009.
doi:10.1038/nphoton.2009.4 Google Scholar
21. Reiten, , M. T., D. Roy Chowdhury, J. Zhou, J. F. O'Hara, and A. K. Azad, "Resonance tuning behavior in closely spaced inhomogeneous bilayer metamaterials," Appl. Phys. Lett.,, Vol. 98, 131105, 2011.
doi:10.1063/1.3566978 Google Scholar
22. Zhou, , J., D. R. Chowdhury, R. Zhao, A. K. Azad, H.-T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O'Hara, "Terahertz chiral metamaterials with giant and dynamically tunable optical activity," Physical Review B , Vol. 86, , 035448, 2012.
doi:10.1103/PhysRevB.86.035448 Google Scholar
23. Huang, , L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research,, Vol. 113, 103-110, 2011. Google Scholar
24. Liu, , S.-H., L.-X. Guo, and , "Negative refraction in an anisotropic metamaterial with a rotation angle between the principal axis and the planar interface," Progress In Electromagnetics Research, Vol. 115, 243-257, 2011. Google Scholar
25. Li, , J., F.-Q. Yang, and J.-F. Dong, , "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011. Google Scholar
26. Canto, , J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011. Google Scholar
28. Giamalaki, M. I., I. S. Karanasiou, and , "Enhancement of a microwave radiometry imaging system's performance using left handed materials," Progress In Electromagnetics Research,, Vol. 117, 253-265, 2011. Google Scholar
28. Xu, , S., L. Yang, L. Huang, and H. Chen, "Experimental measurement method to determine the permittivity of extra thin materials using resonant metamaterials," Progress In Electromagnetics Research, Vol. 120, 327-337, 2011. Google Scholar
29. Duan, , Z., Y. Wang, X. Mao, W.-X. Wang, and M. Chen, "Experimental demonstration of double-negative metamaterials partially filled in a circular waveguide," Progress In Electromagnetics Research, Vol. 121, 215-224, 2011.
doi:10.2528/PIER11090502 Google Scholar
30. Navarro-Cia, M., V. Torres, M. Beruete, and M. Sorolla, "A slow light fishnet-like absorber in the millimeter-wave range," Progress In Electromagnetics Research, Vol. 118, 287-301, 2011..
doi:10.2528/PIER11053105 Google Scholar
31. Sabah, C. and Multiband planar metamaterials, "Microwave and Optical Technology Letters,", Vol. 53, 2255- 2258, 2011. Google Scholar
32. Cao, T. and M. J. Cryan, "Modeling of optical trapping using double negative index fishnet metamaterials," Progress In Electromagnetics Research, Vol. 129, 33-49, 2012. Google Scholar
33. Hasar, , U. C., J. J. Barroso, M. Ertugrul, C. Sabah, and B. Cavusoglu, "Application of a useful uncertainty analysis as a metric tool for assessing the performance of electromagnetic properties retrieval methods of bianisotropic metamaterials," Progress In Electromagnetics Research, Vol. 128, 365-380, 2012. Google Scholar
34. Hasar, , U. C., J. J. Barroso, C. Sabah, and Y. Kaya, "Resolving phase ambiguity in the inverse problem of reflection-only measurement methods," Progress In Electromagnetics Research, Vol. 129, 405-420, 2012. Google Scholar
35. Hasar, , U. C., J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, "Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions," Progress In Electromagnetics Research, Vol. 132, 425- 441, 2012. Google Scholar
36. Sabah, C., "Electric and magnetic excitations broadside-coupled triangular-split-ring resonators," Appl. Phys. A --- | Mater. Sci. Process., Vol. 108, 457-463, 2012.
doi:10.1080/09205071.2012.710537 Google Scholar
37. Sabah, , C., , "Multi-resonant metamaterial design based on concentric V-shaped magnetic resonators," Journal of Electromagnetic Waves and Applications,, Vol. 26, No. 8--9, 1105-1115, 2012.
doi:10.1016/j.optcom.2012.06.043 Google Scholar
38. Sabah, C., "Microwave response of octagon-shaped Low-loss metamaterial," Optics Communications, Vol. 285, 4549-4552, 2012. Google Scholar
39. Sabah, , C., "Multiband metamaterials based on multiple concentric open ring resonators topology," IEEE J. Sel. Top. Quantum Electron., Vol. 19, 850080, 2013. Google Scholar
40. Sabah, C., "Analysis, applications, and a novel design of double negative metamaterials," Ph.D. Thesis, Gaziantep University, 2008. Google Scholar
41. Orfanidis, S. J., Electromagnetic Waves and Antennas, Rutgers University, online book, 2004.
42. Sabah, C., "Transmission line modeling method for planar boundaries containing positive and negative index media," IEEE MMET'08 Conference Proceedings, , 2008. Google Scholar