Vol. 138
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-28
Numerical Approach on Doppler Spectrum Analysis for Moving Targets Above a Time-Evolving Sea Surface
By
Progress In Electromagnetics Research, Vol. 138, 351-365, 2013
Abstract
In order to analyze the Doppler spectrum of three-dimensional (3-D) moving targets above a time-evolving sea surface, a hybrid method with acceleration techniques is proposed to simulate the electromagnetic (EM) scattering from the composite moving model. This hybrid iterative method combines Kirchhoff approximation (KA) and the multilevel fast multipole algorithm (MLFMA) to solve the EM backscattering from the rough sea surface and the targets, respectively, then mutual EM coupling effects between them are taken into account through an iterative process. To overcome the vast computational cost in the iterative process, acceleration approaches which can greatly reduce the calculation time are applied. Coupling area on the sea surface is truncated according to geometrical optic principle. Then a fast far-field approximation (FAFFA) is applied to speed up the mutual interactions between the targets and the sea surface. A successive iteration method is proposed to reduce the convergence steps for the MLFMA process. The accuracy and efficiency of this hybrid method with accelerations are demonstrated. Doppler spectra of backscattering signals obtained from such numerical EM simulations are compared for different incident angles, target velocities and surface models. The broadening effects of the Doppler spectra due to the mutual EM coupling interactions are studied.
Citation
Conghui Qi Zhiqin Zhao Zai-Ping Nie , "Numerical Approach on Doppler Spectrum Analysis for Moving Targets Above a Time-Evolving Sea Surface," Progress In Electromagnetics Research, Vol. 138, 351-365, 2013.
doi:10.2528/PIER13020112
http://www.jpier.org/PIER/pier.php?paper=13020112
References

1. Calvo-Gallego, , J. and F. Perez-Martinez, "Simple traffic surveillance system based on range-doppler radar images," Progress In Electromagnetics Research, Vol. 125, 343-364, 2012.
doi:10.2528/PIER12011809

2. Wang, , Y., Y.-M. Zhang, and L.-X. Guo, "Microwave doppler spectra of sea echoes at high incidence angles: Influences of large-scale waves," Progress In Electromagnetics Research B,, Vol. 48, 99-113, 2013.

3. Valagiannopoulos, C. and N. Uzunoglu, "Simplified model for EM inverse scattering by longitudinal subterranean inhomogeneities exploiting the dawn/dusk ionospheric ridge," IET Microwaves, Antennas & Propagation,, Vol. 5, 1319-1327, 2011.
doi:10.1049/iet-map.2010.0147

4. Sun, , R.-Q., M. Zhang, C. Wang, and Y. Chen, "Study of electromagnetic scattering from ship wakes on PEC sea surfaces by the small-slope approximation theory," Progress In Electromagnetics Research, Vol. 129, 387-404, 2012..

5. Valagiannopoulos, , C. A., "On jamming unfriendly submarine communication by radiating across an island in the vicinity of the opponent's coastline," Electromagnetics, Vol. 32, 438-449, 2012.
doi:10.1080/02726343.2012.717453

6. Valagiannopoulos, , C. A., "On developing alternating voltage around a rotating circular ring under plane wave excitation in the presence of an eccentrically positioned metallic core," Progress In Electromagnetics Research M, Vol. 12, 193-204, 2010.
doi:10.2528/PIERM10040405

7. Bi, S. and X. Y. Ren, "Maneuvering target doppler-bearing tracking with signal time delay using interacting multiple model algorithms," Progress In Electromagnetics Research, Vol. 87, 15-41, 2008.
doi:10.2528/PIER08091501

8. Valagiannopoulos, , C. A., "Study of an electrically anisotropic cylinder excited magnetically by a straight strip line," Progress In Electromagnetics Research, Vol. 73, 297-325, 2007.
doi:10.2528/PIER07041203

9. Chen, H., , M. Zhang, and H.-C. Yin, "Facet-based treatment on microwave bistatic scattering of three-dimensional sea surface with electrically large ship," Progress In Electromagnetics Research, Vol. 123, 385-405, 2012.
doi:10.2528/PIER11101108

10. Wu, , Z.-S., J.-J. Zhang, and L. Zhao, "Composite electromagnetic scattering from the plate target above a one-dimensional sea surface: Taking the diffraction into account," Progress In Electromagnetics Research, Vol. 92, 317-331, 2009.
doi:10.2528/PIER09032902

11. Liu, , Z. , L. Carin, and , "Effcient evaluation of the half-space Green's function for fast-multipole scattering models," Microwave and Optical Technology Letters, Vol. 29, 388-392, 2001.
doi:10.1002/mop.1186

12. Geng, N., , A. Sullivan, and L. Carin, "Fast multipole method for scattering from an arbitrary PEC target above or buried in a lossy half space," IEEE Transactions on Antennas and Propagation, Vol. 49, 740-748, 2001.
doi:10.1109/8.929628

13. Johnson, , J. T., "A numerical study of scattering from an object above a rough surface," IEEE Transactions on Antennas and Propagation, Vol. 50, 1361-1367, 2002.
doi:10.1109/TAP.2002.802152

14. Zhang, Y., , Y. Yang, H. Braunisch, and J. Kong, "Electromagnetic wave interaction of conducting object with rough surface by hybrid SPM/MOM technique," Progress In Electromagnetics Research, Vol. 22, 315-335, 1999.
doi:10.2528/PIER98112506

15. Yang, W., , Z. Zhao, C. Qi, and Z. Nie, "Electromagnetic modeling of breaking waves at low grazing angles with adaptive higher order hierarchical legendre basis functions," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, , 346-352, 2011.
doi:10.1109/TGRS.2010.2052817

16. Beckmann, P. , A. Spizzichino, and , "The Scattering of Electromag netic Waves from Rough Surfaces," Artech House, Inc., Vol. 1, 511, 1987.

17. Tsang, , L., , J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves, Theories and Applications,, Vol. 27, Wiley-Interscience, 2004.

18. Chew, W. C., T. J. Cui, and J. M. Song, "A FAFFA-MLFMA algorithm for electromagnetic scattering," IEEE Transactions on Antennas and Propagation, Vol. 50, 1641-1649, 2002.
doi:10.1109/TAP.2002.802162

19. Chaitin-Chatelin, F. and S. Gratton, "Convergence in finite pre-cision of successive iteration methods under high nonnormality," BIT Numerical Mathematics, Vol. 36, 455-469, 1996.
doi:10.1007/BF01731927

20. Toporkov, , J. V. , G. S. Brown, and , "Numerical simulations of scattering from time-varying, randomly rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, 1616-1625, 2000.
doi:10.1109/36.851961

21. Nie, D., , M. Zhang, X. Geng, and P. Zhou, "Investigation on doppler spectral characteristics of electromagnetic backscattered echoes from dynamic nonlinear surfaces of finite-depth sea," Progress In Electromagnetics Research, Vol. 130, 169-186, 2012.

22. Li, X. , X. Xu, and , "Scattering and doppler spectral analysis for two-dimensional linear and nonlinear sea surfaces," IEEE Transactions on Geoscience and Remote Sensing,, Vol. 49, 603-611, 2011.
doi:10.1109/TGRS.2010.2060204

23. Coifman, , R., , V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, 7-12, 1993.
doi:10.1109/74.250128