Vol. 137
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-12
Application of Chiral Layers and Metamaterials for the Reduction of Radar Cross Section
By
Progress In Electromagnetics Research, Vol. 137, 759-773, 2013
Abstract
In this paper, the applications of chiral layers and metamaterials as radar absorbing materials are investigated. A perfect electric conductor plate covered by a chiral metamaterial is considered and after the formulation of the problem, reflection of the structure under an oblique plane wave incidence of arbitrary polarization is investigated. Then several examples of the applications of chiral layers in nondispersive, dispersive, and chiral nihility conditions are provided to design of zero reflection coatings. Finally, application of chiral metamaterial structures as microwave absorbers is discussed. In some of the provided examples, the method of genetic algorithm is used to optimize chiral coatings for the minimization of co- and cross reflected power.
Citation
Kimia Nikooei Tehrani, Ali Abdolali, Davoud Zarifi, and Farrokh Hojjat-Kashani, "Application of Chiral Layers and Metamaterials for the Reduction of Radar Cross Section," Progress In Electromagnetics Research, Vol. 137, 759-773, 2013.
doi:10.2528/PIER13020805
References

1. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston, 1994.

2. Bassiri, S., C. H. Papas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab," J. Opt. Soc. Am., Vol. 5, 1450-1459, 1988.
doi:10.1364/JOSAA.5.001450        Google Scholar

3. Viitanen, A. J. and I. V. Lindell, "Chiral slab polarization transformer for aperture antennas," IEEE Trans. Antennas Propag., Vol. 46, No. 9, 1395-1397, 1998.
doi:10.1109/8.719989        Google Scholar

4. Li, L.-W., D. You, M.-S. Leong, and T.-S. Yeo, "Electromagnetic scattering by multilayered chiral-media structures: A scattering-to-radiation transform," Progress In Electromagnetics Research, Vol. 26, 249-291, 2000.
doi:10.2528/PIER99080101        Google Scholar

5. Shi, Y. and C. H. Chan, "Solution to electromagnetic scattering by bi-isotropic media using multilevel green's function interpolation method," Progress In Electromagnetics Research, Vol. 97, 259-274, 2009.
doi:10.2528/PIER09092001        Google Scholar

6. Wang, D. X., P. Y. Lau, E. K. N. Yung, and R. S. Chen, "Scattering by conducting bodies coated with bi-isotropic materials," IEEE Trans. Antennas Propag., Vol. 58, No. 8, 2313-2319, 2007.
doi:10.1109/TAP.2007.901850        Google Scholar

7. Ding, D. Z. and R. S. Chen, "Electromagnetic scattering by conducting BOR coated with chiral media above a lossy half space," Progress In Electromagnetics Research, Vol. 104, 385-401, 2010.
doi:10.2528/PIER10021004        Google Scholar

8. Dong, J.-F. and J. Li, "The reflection and transmission of electromagnetic waves by a uniaxial chiral slab," Progress In Electromagnetics Research, Vol. 127, 389-404, 2012.
doi:10.2528/PIER12031703        Google Scholar

9. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
doi:10.1163/156939303322226356        Google Scholar

10. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, and C. M. Soukoulis, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, 035407, 2009.
doi:10.1103/PhysRevB.79.035407        Google Scholar

11. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, 121104, 2009.
doi:10.1103/PhysRevB.79.121104        Google Scholar

12. Wu, Z., B. Q. Zhang, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
doi:10.1163/156939310791285173        Google Scholar

13. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four “U" split ring resonators," Appl. Phys. Lett., Vol. 97, 081901, 2010.
doi:10.1063/1.3457448        Google Scholar

14. Zhao, R., L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, "Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index," Phys. Rev. B, Vol. 83, 035105, 2011.
doi:10.1103/PhysRevB.83.035105        Google Scholar

15. Li, Z., F.-Q. Yang, and J.-F. Dong, "Design and simulation of L-shaped Chiral Negative Refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.        Google Scholar

16. Li, Z., K. B. Alici, E. Colak, and E. Ozbay, "Complementary chiral metamaterials with giant optical activity and negative refractive index," Appl. Phys. Lett., Vol. 98, 161907, 2011.
doi:10.1063/1.3574909        Google Scholar

17. Zarifi, D., M. Soleimani, and V. Nayyeri, "Dual- and multi-band chiral metamaterial structures with giant optical activity and negative refractive index," IEEE Antenna and Wireless Propagation Letters, Vol. 12, 334-337, 2012.
doi:10.1109/LAWP.2012.2191261        Google Scholar

18. Zarifi, D., M. Soleimani, and V. Nayyeri, "A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 251-253, 2012.
doi:10.1163/156939312800030767        Google Scholar

19. Zarifi, D., M. Soleimani, V. Nayyeri, and J. Rashed-Mohassel, "On the miniaturization of semi-planar chiral metamaterial structures," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5768-5776, Dec. 2012.
doi:10.1109/TAP.2012.2214015        Google Scholar

20. Cheng, Y. Z., Y. Nie, and R. Z. Gong, "Giant optical activity and negative refractive index using complementary u-shaped structure assembly," Progress In Electromagnetics Research M, Vol. 25, 239-253, 2012.        Google Scholar

21. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108, 2009.
doi:10.1103/PhysRevB.80.033108        Google Scholar

22. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators," Opt. Lett., Vol. 36, No. 9, 2011.
doi:10.1364/OL.36.001653        Google Scholar

23. Ye, Y., X. Li, F. Zhuang, and S.-W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, 031111, 2011.
doi:10.1063/1.3615054        Google Scholar

24. Dong, J., "Exotic characteristics of power propagation in the chiral nihility fiber," Progress In Electromagnetics Research, Vol. 99, 163-178, 2009.
doi:10.2528/PIER09102801        Google Scholar

25. Illahi, A. and Q. A. Naqvi, "Study of focusing of electromagnetic waves reflected by a PEMC backed chiral nihility reflector using Maslov's method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 863-873, 2009.
doi:10.1163/156939309788355216        Google Scholar

26. Dong, J., "Surface wave modes in chiral negative refraction grounded slab waveguides," Progress In Electromagnetics Research, Vol. 95, 153-166, 2009.
doi:10.2528/PIER09062604        Google Scholar

27. Dong, J. F., J. Li, and F.-Q. Yang, "Guided modes in the four-layer slab waveguide containing chiral nihility core," Progress In Electromagnetics Research, Vol. 112, 241-255, 2011.        Google Scholar

28. Naqvi, A., A. Hussain, and Q. A. Naqvi, "Waves in fractional dual planar waveguides containing chiral nihility metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1575-1586, 2010.
doi:10.1163/156939310792149614        Google Scholar

29. Baqir, M. A., A. A. Syed, and Q. A. Naqvi, "Electromagnetic Fields in a circular waveguide containing chiral nihility metamaterial," Progress In Electromagnetics Research M, Vol. 16, 85-93, 2011.        Google Scholar

30. Tuz, V. R., "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-152, 2010.
doi:10.2528/PIER10030706        Google Scholar

31. Naqvi, Q. A., "Planar slab of chiral nihility metamaterial backed by fractional dual/PEMC interface," Progress In Electromagnetics Research, Vol. 85, 381-391, 2008.
doi:10.2528/PIER08081201        Google Scholar

32. Naqvi, Q. A., "Fractional dual solutions in grounded chiral nihility slab and their effect on outside field," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 56, 773-784, 2009.
doi:10.1163/156939309788019958        Google Scholar

33. Zarifi, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506        Google Scholar

34. Qamar, S. R., A. Naqvi, and A. A. Syed, "Radiation characteristics of elementary sources located in unbounded chiral nihility metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 713-722, 2011.
doi:10.1163/156939311794827294        Google Scholar

35. Ahmad, S. and Q. A. Naqvi, "Directive EM radiation of a line source in the presence of a coated nihility cylinder," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 761-771, 2009.
doi:10.1163/156939309788019886        Google Scholar

36. Sabah, C. and H. G. Roskos, "Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605        Google Scholar

37. Song, K., X. P. Zhao, Q. H. Fu, Y. H. Liu, and W. R. Zhao, "Wide-angle 90o-polarization rotator using chiral metamaterial with negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1967-1976, 2012.
doi:10.1080/09205071.2012.723673        Google Scholar

38. Zhu, W., Y. Huang, I. D. Rukhlenko, G.Wen, and M. Premaratne, "Configurable metamaterial absorber with pseudo wideband spectrum," Optics Express, Vol. 20, No. 6, 6616-6621, 2012.
doi:10.1364/OE.20.006616        Google Scholar

39. Zhao, R., T. Koschny, E. N. Economou, and C. M. Soukoulis, "Comparison of chiral metamaterial designs for repulsive casimir force," Phys. Rev. B, Vol. 81, 235126, 2010.
doi:10.1103/PhysRevB.81.235126        Google Scholar

40. Oraizi, H., A. Abdolali, and N. Vaseghi, "Application of double zero metamaterials as radar absorbing materials for the reduction of radar cross section," Progress In Electromagnetics Research, Vol. 101, 323-337, 2010.
doi:10.2528/PIER10010603        Google Scholar

41. Serdyukov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Taylor & Francis, Amsterdam, 2001.