1. Capolino, F., Theory and Phenomena of Metamaterials, 1st Edition, CRC Press, 2009.
doi:10.1201/9781420054262
2. Shelby, R., D. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
3. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, 788-792, 2004.
doi:10.1126/science.1096796 Google Scholar
4. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed materials," Physical Review Letters, Vol. 85, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933 Google Scholar
5. Gralak, B., S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," JOSA A, Vol. 17, 1012-1020, 2000.
doi:10.1364/JOSAA.17.001012 Google Scholar
6. Wu, L., M. Mazilu, and T. F. Krauss, "Beam steering in planar-photonic crystals: From superprism to supercollimator," Journal of Lightwave Technology, Vol. 21, 561, 2003.
doi:10.1109/JLT.2003.808773 Google Scholar
7. Notomi, M., "Negative refraction in photonic crystals," Optical and Quantum Electronics, Vol. 34, 133-143, 2002.
doi:10.1023/A:1013300825612 Google Scholar
8. Baba, T. and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE Journal of Quantum Electronics, Vol. 38, 909-914, 2002.
doi:10.1109/JQE.2002.1017606 Google Scholar
9. Enoch, S., G. Tayeb, and B. Gralak, "The richness of the dispersion relation of electromagnetic bandgap materials," IEEE Transactions on Antennas and Propagation, Vol. 51, 2659-2666, 2003.
doi:10.1109/TAP.2003.817549 Google Scholar
10. Baba, T., "Slow light in photonic crystals," Nature Photonics, Vol. 2, 465-473, 2008.
doi:10.1038/nphoton.2008.146 Google Scholar
11. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals: Toward microscale lightwave circuits," Journal of Lightwave Technology, Vol. 17, 2032, 1999.
doi:10.1109/50.802991 Google Scholar
12. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
13. Yablonovitch, E., "Photonic crystals," Journal of Modern Optics, Vol. 41, 173-194, 1994.
doi:10.1080/09500349414550261 Google Scholar
14. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
15. Noda, S., A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature, Vol. 407, 608-610, 2000.
doi:10.1038/35036532 Google Scholar
16. Grann, E. B., M. Moharam, and D. A. Pommet, "Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings," JOSA A, Vol. 11, 2695-2703, 1994.
doi:10.1364/JOSAA.11.002695 Google Scholar
17. Lindell, I., S. Tretyakov, K. Nikoskinen, and S. Ilvonen, "BW media - Media with negative parameters, capable of supporting backward waves," Microwave and Optical Technology Letters, Vol. 31, 129-133, 2001.
doi:10.1002/mop.1378 Google Scholar
18. Smith, D. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Physical Review Letters, Vol. 90, 77405, 2003.
doi:10.1103/PhysRevLett.90.077405 Google Scholar
19. Smith, D. R., P. Rye, D. C. Vier, A. F. Starr, J. J. Mock, and T. Perram, "Design and measurement of anisotropic metamaterials that exhibit negative refraction," IEICE Transactions on Electronics, Vol. E87-C, 359-370, 2004. Google Scholar
20. Smith, D. R., D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Applied Physics Letters, Vol. 84, 2244, 2004.
doi:10.1063/1.1690471 Google Scholar
21. Wood, B., J. Pendry, and D. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Physical Review B, Vol. 74, 115116, 2006.
doi:10.1103/PhysRevB.74.115116 Google Scholar
22. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Physical Review Letters, Vol. 99, 63908, 2007.
doi:10.1103/PhysRevLett.99.063908 Google Scholar
23. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nature Materials, Vol. 6, 946-950, 2007.
doi:10.1038/nmat2033 Google Scholar
24. Elser, J. and V. A. Podolskiy, "Scattering-free plasmonic optics with anisotropic metamaterials," Physical Review Letters, Vol. 100, 66402, 2008.
doi:10.1103/PhysRevLett.100.066402 Google Scholar
25. Yao, J., Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science, Vol. 321, 930-930, 2008.
doi:10.1126/science.1157566 Google Scholar
26. Fang, A., T. Koschny, and C. M. Soukoulis, "Optical anisotropic metamaterials: Negative refraction and focusing," Physical Review B, Vol. 79, 245127, 2009.
doi:10.1103/PhysRevB.79.245127 Google Scholar
27. Garcia, C. R., J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, and V. Gonzalez, "3D printing of anisotropic metamaterials," Progress In Electromagnetics Research Letters, Vol. 34, 75-82, 2012. Google Scholar
28. Ponizovskaya, E., M. Nieto-Vesperinas, and N. Garcia, "Losses for microwave transmission in metamaterials for producing left-handed materials: The strip wires," Applied Physics Letters, Vol. 81, 4470-4472, 2002.
doi:10.1063/1.1527982 Google Scholar
29. Varadan, V. and L. Ji, "Accounting for power `loss' in metamaterials," Metamaterials 2008, Pamplona, Spain, 2008. Google Scholar
30. Fang, A., T. Koschny, M. Wegener, and C. Soukoulis, "Self-consistent calculation of metamaterials with gain," Physical Review B, Vol. 79, 241104, 2009.
doi:10.1103/PhysRevB.79.241104 Google Scholar
31. Varadan, V. V. and J. Liming, "Does a negative refractive index always result in negative refraction? - Effect of loss," IEEE MTT-S International Microwave Symposium Digest, MTT' 09, 61-64, 2009. Google Scholar
32. Khurgin, J. B. and G. Sun, "Scaling of losses with size and wavelength in nanoplasmonics and metamaterials," Applied Physics Letters, Vol. 99, 211106, 2011.
doi:10.1063/1.3664105 Google Scholar
33. De Damborenea, J., "Surface modification of metals by high power lasers," Surface and Coatings Technology, Vol. 100, 377-382, 1998.
doi:10.1016/S0257-8972(97)00652-X Google Scholar
34. Batanov, G., N. Berezhetskaya, I. Kossyi, A. Magunov, and V. Silakov, "Interaction of high-power microwave beams with metal-dielectric media," The European Physical Journal Applied Physics, Vol. 26, 11-16, 2004.
doi:10.1051/epjap:2004016 Google Scholar
35. Petelin, M. and A. Fix, "Comparison of metals in their steadiness to pulse-periodic microwave heating fatigue," IEEE International Vacuum Electronics Conference, 163-164, 2009. Google Scholar
36. Bilik, V. and J. Bezek, "High power limits of waveguide stub tuners," J. Microw. Power, Vol. 44, 178-186, 2010. Google Scholar
37. Anzel, I., "High temperature oxidation of metals and alloys,", 325-336, Association of Metallurgical Engineers of Serbia, 2007. Google Scholar
38. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Applied Physics Letters, Vol. 74, 1212, 1999.
doi:10.1063/1.123502 Google Scholar
39. Witzens, J., M. Loncar, and A. Scherer, "Self-collimation in planar photonic crystals," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, 1246-1257, 2002.
doi:10.1109/JSTQE.2002.806693 Google Scholar
40. Iliew, R., C. Etrich, U. Peschel, F. Lederer, M. Augustin, H. J. Fuchs, D. Schelle, E. B. Kley, S. Nolte, and A. Tunnermann, "Diffractionless propagation of light in a low-index photonic-crystal film," Applied Physics Letters, Vol. 85, 5854-5856, 2004.
doi:10.1063/1.1830675 Google Scholar
41. Feng, S., Z.-Y. Li, Z.-F. Feng, K. Ren, B.-Y. Cheng, and D.-Z. Zhang, "Focusing properties of a rectangular-rod photonic-crystal slab," Journal of Applied Physics, Vol. 98, 063102, 2005.
doi:10.1063/1.2058190 Google Scholar
42. Iliew, R., C. Etrich, and F. Lederer, "Self-collimation of light in three-dimensional photonic crystals," Optics Express, Vol. 13, 7076-7085, 2005.
doi:10.1364/OPEX.13.007076 Google Scholar
43. Shin, J. and S. Fan, "Conditions for self-collimation in three-dimensional photonic crystals," Optics Letters, Vol. 30, 2397-2399, 2005.
doi:10.1364/OL.30.002397 Google Scholar
44. Lu, Z., S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, "Experimental demonstration of self-collimation inside a three-dimensional photonic crystal," Physical Review Letters, Vol. 96, 173902, 2006.
doi:10.1103/PhysRevLett.96.173902 Google Scholar
45. Kwon, D. H. and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New Journal of Physics, Vol. 10, 115023, 2008.
doi:10.1088/1367-2630/10/11/115023 Google Scholar
46. Mekis, A., J. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Physical Review Letters, Vol. 77, 3787-3790, 1996.
doi:10.1103/PhysRevLett.77.3787 Google Scholar
47. Roberts, D., M. Rahm, J. Pendry, and D. Smith, "Transformation-optical design of sharp waveguide bends and corners," Applied Physics Letters, Vol. 93, 251111, 2008.
doi:10.1063/1.3055604 Google Scholar
48. Gabrielli, L. H. and M. Lipson, "Integrated Luneburg lens via ultra-strong index gradient on silicon," Optics Express, Vol. 19, 20122-20127, 2011.
doi:10.1364/OE.19.020122 Google Scholar
49. Spadoti, D. H., L. H. Gabrielli, C. B. Poitras, and M. Lipson, "Focusing light in a curved-space," Optics Express, Vol. 18, 3181-3186, 2010.
doi:10.1364/OE.18.003181 Google Scholar
50. Vasic, B., G. Isic, R. Gajic, and K. Hingerl, "Controlling electromagnetic fields with graded photonic crystals in metamaterial regime," Optics Express, Vol. 18, 20321-20333, 2010.
doi:10.1364/OE.18.020321 Google Scholar
51. Akmansoy, E., E. Centeno, K. Vynck, D. Cassagne, and J. M. Lourtioz, "Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect," Applied Physics Letters, Vol. 92, 133501, 2008.
doi:10.1063/1.2901684 Google Scholar
52. Cassan, E., K. V. Do, C. Caer, D. Marris-Morini, and L. Vivien, "Short-wavelength light propagation in graded photonic crystals," Journal of Lightwave Technology, Vol. 29, 1937-1943, 2011.
doi:10.1109/JLT.2011.2151175 Google Scholar
53. Centeno, E. and D. Cassagne, "Graded photonic crystals," Optics Letters, Vol. 30, 2278-2280, 2005.
doi:10.1364/OL.30.002278 Google Scholar
54. Do, K. V., X. Le Roux, D. Marris-Morini, L. Vivien, and E. Cassan, "Experimental demonstration of light bending at optical frequencies using a non-homogenizable graded photonic crystal," Optics Express, Vol. 20, 4776-4783, 2012.
doi:10.1364/OE.20.004776 Google Scholar
55. Li, Y. Y., M. Y. Li, P. F. Gu, Z. R. Zheng, and X. Liu, "Graded wavelike two-dimensional photonic crystal made of thin films," Applied Optics, Vol. 47, C70-C74, 2008.
doi:10.1364/AO.47.000C70 Google Scholar
56. Rumpf, R. C. and J. Pazos, "Synthesis of spatially variant lattices," Optics Express, Vol. 20, 15263-15274, 2012.
doi:10.1364/OE.20.015263 Google Scholar
57. Hussein, M. I., "Reduced Bloch mode expansion for periodic media band structure calculations," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, Vol. 465, 2825-2848, 2009.
doi:10.1098/rspa.2008.0471 Google Scholar
58. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Optics Express, Vol. 8, 173-190, 2001.
doi:10.1364/OE.8.000173 Google Scholar
59. Guo, S. and S. Albin, "Simple plane wave implementation for photonic crystal calculations," Optics Express, Vol. 11, 167-175, 2003.
doi:10.1364/OE.11.000167 Google Scholar
60. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006 Google Scholar
61. Gibson, I., D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 459, Springer, London, New York, 2010.
62. Wohlers, T., "Wohlers report 2012: Additive manufacturing and 3D printing state of the industry,", Annual Worldwide Progress Report, Wohlers Associates, Fort Collins, 2012. Google Scholar
63. Palmer, J., B. Jokiel, C. Nordquist, B. Kast, C. Atwood, E. Grant, F. Livingston, F. Medina, and R. Wicker, "Miniature RF components enabled by mesoscale rapid manufacturing,", 2005. Google Scholar
64. Palmer, J., B. Jokiel, C. Nordquist, B. Kast, C. Atwood, E. Grant, F. Livingston, F. Medina, and R. Wicker, "Mesoscale RF relay enabled by integrated rapid manufacturing," Rapid Prototyping Journal, Vol. 12, 148-155, 2006.
doi:10.1108/13552540610670726 Google Scholar
65. Choi, J. W., E. MacDonald, and R. Wicker, "Multi-material microstereolithography," The International Journal of Advanced Manufacturing Technology, Vol. 49, 543-551, 2010.
doi:10.1007/s00170-009-2434-8 Google Scholar
66. Choi, J. W., H. C. Kim, and R. Wicker, "Multi-material stereolithography," Journal of Materials Processing Technology, Vol. 211, 318-328, 2011.
doi:10.1016/j.jmatprotec.2010.10.003 Google Scholar
67. Choi, J. W., F. Medina, C. Kim, D. Espalin, D. Rodriguez, B. Stucker, and R. Wicker, "Development of a mobile fused deposition modeling system with enhanced manufacturing flexibility," Journal of Materials Processing Technology, Vol. 211, 424-432, 2011.
doi:10.1016/j.jmatprotec.2010.10.019 Google Scholar
68. Lopes, A. J., E. MacDonald, and R. B. Wicker, "Integrating stereolithography and direct print technologies for 3D structural electronics fabrication," Rapid Prototyping Journal, Vol. 18, 129-143, 2012.
doi:10.1108/13552541211212113 Google Scholar
69. Wicker, R. B. and E. W. MacDonald, "Multi-material, multi-technology stereolithography," Virtual and Physical Prototyping, Vol. 7, 181-194, 2012.
doi:10.1080/17452759.2012.721119 Google Scholar
70. Botten, L., T. White, C. M. de Sterke, and R. McPhedran, "Wide-angle coupling into rod-type photonic crystals with ultralow reflectance," Physical Review E, Vol. 74, 026603, 2006.
doi:10.1103/PhysRevE.74.026603 Google Scholar
71. Sigaj, W. and B. Gralak, "Semianalytical design of antireflection gratings for photonic crystals," Physical Review B, Vol. 85, 035114, 2012.
doi:10.1103/PhysRevB.85.035114 Google Scholar