Vol. 138
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-30
B -Calm: an Open-Source Multi-GPU-Based 3D-FDTD with Multi-Pole Dispersion for Plasmonics
By
Progress In Electromagnetics Research, Vol. 138, 467-478, 2013
Abstract
Numerical calculations based on finite-difference timedomain (FDTD) simulations for metallic nanostructures in a broad optical spectrum require an accurate modeling of the permittivity of dispersive materials. In this paper, we present the algorithms behind BCALM (Belgium-CAlifornia Light Machine), an open-source 3D-FDTD solver simultaneously operating on multiple Graphical Processing Units (GPUs) and efficiently utilizing multi-pole dispersion models while hiding latency in inter-GPU memory transfers. Our architecture shows a reduction in computing times for multi-pole dispersion models and an almost linear speed-up with respect to the amount of used GPUs. We benchmark B-CALM by computing the absorption efficiency of a metallic nanosphere in a broad spectral range with a six-pole Lorentz model and compare it with Mie theory and with a widely used Central Processing Unit (CPU)-based FDTD simulator.
Citation
Pierre Wahl, Dany Sebastien Ly Gagnon, Christof Debaes, Jurgen Van Erps, Nathalie Vermeulen, David A. B. Miller, and Hugo Thienpont, "B -Calm: an Open-Source Multi-GPU-Based 3D-FDTD with Multi-Pole Dispersion for Plasmonics," Progress In Electromagnetics Research, Vol. 138, 467-478, 2013.
doi:10.2528/PIER13030606
References

1. Taflove, , A., S. C. Hagness, et al., Computational Electrodynamics: The Finite-difference Time-domain Method, ,, Artech House, , 1995.

2. Junkin, , G., , "Conformal FDTD modeling of imperfect conductors at millimeter wave bands ," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 199-205, Jan. 2011.
doi:10.1109/TAP.2010.2090490

3. Gondarenko, , A., M. Lipson, and , "Low modal volume dipole-like dielectric slab resonator," Opt. Express,, Vol. 16, No. 22, 17689-17694, 2008.
doi:10.1364/OE.16.017689

4. Jensen, J. S. , J. S., O. Sigmund, and , "Topology optimization of photonic crystal structures: A high-bandwidth low-loss T-junction waveguide," JOSA B, Vol. 22, No. 6, 1191-1198, 2005.
doi:10.1364/JOSAB.22.001191

5. Hansen, , P., Y. Zheng, E. Perederey, and L. Hesselink, "Nanophotonic device optimization with adjoint FDTD," CLEO: Applications and Technology, Optical Society of America, 2011.

6. Nagaoka, , T. and S. Watanabe, "Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation," Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 401-404, 2011.

7. Stefanski, , T. P., N. Chavannes, and N. Kuster, "Multi-GPU accelerated finite-difference time-domain solver in open computing language," PIERS Online, Vol. 7, No. 1, 71-74, 2011.

8. Palik, , E. D., G. Ghosh, and , Handbook of Optical Constants of Solids, Academic Press, 1998.

9. Wahl, P., D. S. Ly-Gagnon, C. Debaes, D. A. B. Miller, and H. Thienpont, "B-calm: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics, ," 11th International Conference on Numerical Simulation B-CALM: An Open-Source multi-GPU-based 3D-FDTD with Multi-Pole Dispersion , 11-12, 2011.

10. Shahmansouri, A., B. Rashidian, and , "GPU implementation of split-field finite-difference time-domain method for drude-lorentz dispersive media," Progress In Electromagnetics Research,, Vol. 125, 55-77, 2012.
doi:10.2528/PIER12010505

11. Lee, , K. H., I. Ahmed, R. S. Goh, E. H. Khoo, E. P. Li, and T. G. Hung, "Implementation of the FDTD method based on lorentz-drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, 441-456, 2011.

2. Micikevicius, P., "3D definite difference computation on GPUs using CUDA," Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, ACM, , 79-84, 2009.
doi:10.1145/1513895.1513905

13. Playne, , D. P., K. A. Hawick, and , "Comparison of GPU archi-tectures for asynchronous communication with finite-differencing applications," Concurrency and Computation: Practice and Experience, 2012.

14. Oskooi, , A. F., D. Roundy, M. Ibanescu, P. Bermel, and S. G. Johnson, "Meep: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, No. 3, 687-702, Mar. 2010.
doi:10.1016/j.cpc.2009.11.008

15. Rakic, , A. D., A. B. Djuri·sic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelec-tronic devices," Applied Optics,, Vol. 37, No. 22, 5271-5283, 1998.
doi:10.1364/AO.37.005271

16. Nvidia, "Nvidia cuda programming guide," NVIDIA, , 2011.

17. Zunoubi, , M. R., J. Payne, and , "Analysis of 3-dimensional electromagnetic fields in dispersive media using cuda," Progress In Electromagnetics Research, Vol. 16, 185-196, 2010.

18. Ishimaru, A., , Wave Propagation and Scattering in Random Media,, Wiley-IEEE Press, 1999.