1. Taflove, , A., S. C. Hagness, et al., Computational Electrodynamics: The Finite-difference Time-domain Method, ,, Artech House, , 1995.
2. Junkin, , G., , "Conformal FDTD modeling of imperfect conductors at millimeter wave bands ," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 199-205, Jan. 2011.
doi:10.1109/TAP.2010.2090490
3. Gondarenko, , A., M. Lipson, and , "Low modal volume dipole-like dielectric slab resonator," Opt. Express,, Vol. 16, No. 22, 17689-17694, 2008.
doi:10.1364/OE.16.017689
4. Jensen, J. S. , J. S., O. Sigmund, and , "Topology optimization of photonic crystal structures: A high-bandwidth low-loss T-junction waveguide," JOSA B, Vol. 22, No. 6, 1191-1198, 2005.
doi:10.1364/JOSAB.22.001191
5. Hansen, , P., Y. Zheng, E. Perederey, and L. Hesselink, "Nanophotonic device optimization with adjoint FDTD," CLEO: Applications and Technology, Optical Society of America, 2011.
6. Nagaoka, , T. and S. Watanabe, "Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation," Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, 401-404, 2011.
7. Stefanski, , T. P., N. Chavannes, and N. Kuster, "Multi-GPU accelerated finite-difference time-domain solver in open computing language," PIERS Online, Vol. 7, No. 1, 71-74, 2011.
8. Palik, , E. D., G. Ghosh, and , Handbook of Optical Constants of Solids, Academic Press, 1998.
9. Wahl, P., D. S. Ly-Gagnon, C. Debaes, D. A. B. Miller, and H. Thienpont, "B-calm: An open-source GPU-based 3D-FDTD with multi-pole dispersion for plasmonics, ," 11th International Conference on Numerical Simulation B-CALM: An Open-Source multi-GPU-based 3D-FDTD with Multi-Pole Dispersion , 11-12, 2011.
10. Shahmansouri, A., B. Rashidian, and , "GPU implementation of split-field finite-difference time-domain method for drude-lorentz dispersive media," Progress In Electromagnetics Research,, Vol. 125, 55-77, 2012.
doi:10.2528/PIER12010505
11. Lee, , K. H., I. Ahmed, R. S. Goh, E. H. Khoo, E. P. Li, and T. G. Hung, "Implementation of the FDTD method based on lorentz-drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, 441-456, 2011.
2. Micikevicius, P., "3D definite difference computation on GPUs using CUDA," Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units, ACM, , 79-84, 2009.
doi:10.1145/1513895.1513905
13. Playne, , D. P., K. A. Hawick, and , "Comparison of GPU archi-tectures for asynchronous communication with finite-differencing applications," Concurrency and Computation: Practice and Experience, 2012.
14. Oskooi, , A. F., D. Roundy, M. Ibanescu, P. Bermel, and S. G. Johnson, "Meep: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, No. 3, 687-702, Mar. 2010.
doi:10.1016/j.cpc.2009.11.008
15. Rakic, , A. D., A. B. Djuri·sic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelec-tronic devices," Applied Optics,, Vol. 37, No. 22, 5271-5283, 1998.
doi:10.1364/AO.37.005271
16. Nvidia, "Nvidia cuda programming guide," NVIDIA, , 2011.
17. Zunoubi, , M. R., J. Payne, and , "Analysis of 3-dimensional electromagnetic fields in dispersive media using cuda," Progress In Electromagnetics Research, Vol. 16, 185-196, 2010.
18. Ishimaru, A., , Wave Propagation and Scattering in Random Media,, Wiley-IEEE Press, 1999.