1. Chaudhary, G., Y. Jeong, K. Kim, and D. Ahn, "Design of dual-band bandpass filters with controllable bandwidths using new mapping function," Progress In Electromagnetics Research, Vol. 124, 17-34, 2012.
doi:10.2528/PIER11111407 Google Scholar
2. Gulgowski, J. and J. J. Michalski, "The analytic extraction of the complex-valued coupling matrix and its application in the microwave filter modeling," Progress In Electromagnetics Research, Vol. 130, 131-151, 2012. Google Scholar
3. Ning, H., J. Wang, Q. Xiong, and L. Mao, "Design of planar dual and triple narrow-band bandstop filters with independently controlled stopbands and improved spurious response," Progress In Electromagnetics Research, Vol. 131, 259-274, 2012. Google Scholar
4. Chen, C.-Y. and C.-C. Lin, "The design and fabrication of a highly compact microstrip dual-band bandpass filter," Progress In Electromagnetics Research, Vol. 112, 299-307, 2011. Google Scholar
5. Wu, S.-M., C.-T. Kuo, P.-Y. Lyu, Y.-L. Shen, and C.-I. Chien, "Miniaturization design of full differential bandpass filter with coupled resonators using embedded passive device technology," Progress In Electromagnetics Research, Vol. 121, 365-379, 2011.
doi:10.2528/PIER11091404 Google Scholar
6. Lopez, B., D. V. B. Murthy, and A. Corona-Chavez, "Half mode microwave filters based on epsilon near zero and mu near zero concepts," Progress In Electromagnetics Research, Vol. 113, 379-393, 2011. Google Scholar
7. Xiao, K., L. F. Ye, F. Zhao, S. L. Chai, and L. W. Li, "Coupling matrix decomposition in designs and applications of microwave filters," Progress In Electromagnetics Research, Vol. 117, 409-423, 2011. Google Scholar
8. Rezaee, P., M. Tayarani, and R. Knochel, "Active learning method for the determination of coupling factor and external Q in microstrip filter design," Progress In Electromagnetics Research, Vol. 120, 459-479, 2011. Google Scholar
9. Yang, R.-Y., C.-Y. Hung, and J.-S. Lin, "Design and fabrication of a quad-band bandpass filter using multi-layered SIR structure," Progress In Electromagnetics Research, Vol. 114, 457-468, 2011. Google Scholar
10. Chen, C.-H., C.-S. Shih, T.-S. Horng, and S.-M. Wu, "Very miniature dual-band and dual-mode bandpass filter designs on an integrated passive device chip," Progress In Electromagnetics Research, Vol. 119, 461-476, 2011.
doi:10.2528/PIER11080105 Google Scholar
11. Jedrzejewski, A., N. Leszczynska, L. Szydlowski, and M. Mrozowski, "Zero-pole approach to computer aided design of in-line SIW filters with transmission zeros," Progress In Electromagnetics Research, Vol. 131, 517-533, 2012. Google Scholar
12. Vegesna, S. and M. Sead, "Novel compact dual-band bandpass microstrip filter," Progress In Electromagnetics Research B, Vol. 20, 245-262, 2010.
doi:10.2528/PIERB10012210 Google Scholar
13. Meng, W. and K.-L. Wu, "Analytical diagnosis and tuning of narrowband multi-coupled resonator filters," IEEE Trans. on Microw. Theory and Tech., Vol. 54, 3765-3771, Oct. 2006.
doi:10.1109/TMTT.2006.881623 Google Scholar
14. Meng, M. and K.-L. Wu, "An analytical approach to computer-aided diagnosis and tuning of lossy microwave coupled resonator filters," IEEE Trans. on Microw. Theory and Tech., Vol. 57, 3188-3195, Dec. 2009.
doi:10.1109/TMTT.2009.2033868 Google Scholar
15. Hsu, H.-T., H.-W. Yao, K. A. Zaki, and A. E. Atia, "Computer-aided diagnosis and tuning of cascaded coupled resonators filters," IEEE Trans. on Microw. Theory and Tech., Vol. 50, 1137-1145, Apr. 2002.
doi:10.1109/22.993417 Google Scholar
16. Hsu, H.-T., Z. Zhang, K. A. Zaki, and A. E. Atia, "Parameter extraction for symmetric coupled-resonator filters," IEEE Trans. on Microw. Theory and Tech., Vol. 50, 2971-2978, Dec. 2002.
doi:10.1109/TMTT.2002.805283 Google Scholar
17. Macchiarella, G. and D. Traina, "A formulation of the Cauchy method suitable for the synthesis of lossless circuit models of microwave filters from lossy measurement," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 5, 243-245, May 2006.
doi:10.1109/LMWC.2006.873583 Google Scholar
18. Esmaeili, M. and A. Borji, "Diagnosis and tuning of multiple coupled resonator filters," 18th Iranian Conference on Electrical Engineering (ICEE), 124-129, Iran, 2010.
doi:10.1109/IRANIANCEE.2010.5507088 Google Scholar
19. Macchiarella, G., "Extraction of unloaded Q and coupling matrix from measurements on filters with large loss," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 6, 307-309, Jun. 2010.
doi:10.1109/LMWC.2010.2047455 Google Scholar
20. Lamperez, A. G., T. K. Sarkar, and M. S. Palma, "Generation of accurate rational models of lossy systems using the Cauchy method," IEEE Microwave Wire. Compon. Lett., Vol. 14, No. 10, 490-492, Oct. 2004.
doi:10.1109/LMWC.2004.834576 Google Scholar
21. Pepe, G., F.-J. Gortz, and H. Chaloupka, "Sequential tuning of microwave filters using adaptive models and parameter extraction," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 1, 22-31, Jan. 2005.
doi:10.1109/TMTT.2004.839342 Google Scholar
22. Accatino, L., "Computer-aided tuning of microwave filters," IEEE Int. Microw. Symp. Dig., 249-252, Jun. 1986.
doi:10.1109/MWSYM.1986.1132161 Google Scholar
23. Kahrizi, M., S. Safavi-Naeini, S. K. Chaudhuri, and R. Sabry, "Computer diagnosis and tuning of RF and microwave filters using model-based parameter estimation," IEEE Trans. on Circuit Syst. I, Vol. 49, No. 9, 1263-1270, Sep. 2002.
doi:10.1109/TCSI.2002.802363 Google Scholar
24. Harscher, P., R. Vahldieck, and S. Amari, "Automated filter tuning using generalized low-pass prototype networks and gradient-based parameter extraction," IEEE Trans. on Microw. Theory and Tech., Vol. 49, No. 12, 2532-2538, Dec. 2001.
doi:10.1109/22.971646 Google Scholar
25. Wang, R. and J. Xu, "Extracting coupling matrix and unloaded Q from scattering parameters of lossy filters," Progress In Electromagnetics Research, Vol. 115, 303-315, 2011. Google Scholar
26. Wang, R., J. Xu, C.-L. Wei, M.-Y. Wang, and X.-C.Zhang, "Improved extraction of coupling matrix and unloaded Q from S-parameters of lossy resonators," Progress In Electromagnetics Research, Vol. 120, 67-81, 2011. Google Scholar
27. Michalski, J. J., "Artificial neural networks approach in microwave filter tuning," Progress In Electromagnetics Research, Vol. 13, 173-188, 2010. Google Scholar
28. Michalski, J. J., "Inverse modeling in application for sequential filter tuning," Progress In Electromagnetics Research, Vol. 115, 113-129, 2011. Google Scholar
29. Michalski, J. J., "On linear mapping of filter characteristic to position of tuning elements in filter tuning algorithm," Progress In Electromagnetics Research, Vol. 123, 279-298, 2012.
doi:10.2528/PIER11101009 Google Scholar
30. Kacmajor, T. and J. J. Michalski, "Filter tuning based on linear decomposition of scattering characteristics," Progress In Electromagnetics Research, Vol. 135, 451-464, 2013. Google Scholar
31. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Trans. on Microw. Theory and Tech., Vol. 51, No. 1, Jan. 2003.
doi:10.1109/TMTT.2002.806937 Google Scholar
32. Bandler, J. W., et al., "Electromagnetic optimization exploiting aggressive space mapping," IEEE Trans. on Microw. Theory and Tech., Vol. 43, 2874-2882, Dec. 1995.
doi:10.1109/22.475649 Google Scholar
33. Zhang, Y.-L., T. Su, B. Wu, and C.-H. Liang, "Tuning of microwave filters based on vector fitting and aggressive space mapping," Journal of South China University of Technology, Vol. 41, 19-23, 2013. Google Scholar
34. Zhang, Y. L., T. Su, Z. P. Li, and C. H. Liang, "A fast tuning method for microwave filter using VF-ASM technology," Progress In Electromagnetics Research M, Vol. 30, 25-37, 2013. Google Scholar