1. Munns, I. J. and G. A. Georgiou, "Ultrasonic and radiographic NDT of butt fusion welded polyethylene pipes," Insight, Vol. 41, No. 5, 1999. Google Scholar
2. Sangworasil, M., Y. Kitjaidure, C. Yossontikul, and K. Chitsajul, "An electrical capacitance tomography," Signal Processing 6th International Conference, Vol. 2, 1766-1769, 2002. Google Scholar
3. Liu, S., Q. Chen, X. Xiong, Z. Zhang, and J. Lei, "Preliminary study on ect imaging of flames in porous media," Measurement Science and Technology, Vol. 19, No. 9, 094017, 2008.
doi:10.1088/0957-0233/19/9/094017 Google Scholar
4. Yang, W., "Design of electrical capacitance tomography sensors," Measurement Science and Technology, Vol. 21, 13, 2010. Google Scholar
5. Yan, Y., T. Qiu, G. Lu, M. Hossain, G. Gilabert, and S. Liu, "Recent advances in flame tomography," Chinese Journal of Chemical Engineering, Vol. 20, No. 2, 389-399, 2012.
doi:10.1016/S1004-9541(12)60402-9 Google Scholar
6. Waterfal, R. C., R. He, P. Wolanski, and Z. Gut, "Flame visualizations using electrical capacitance tomography (ECT)," Proc. SPIE 4188, Process Imaging for Automatic Control, 242-250, 2001.
doi:10.1117/12.417170 Google Scholar
7. Fan, L. S., W. Warsito, and B. Du, "Electrical capacitance tomography imaging of gas-solid and gas-liquid-solid fluidized bed systems," Journal of Visualization, Vol. 7, No. 1, 2004.
doi:10.1007/BF03181476 Google Scholar
8. Qiang, L. and Z. Yingna, "Review of techniques for the mass flow rate measurement of pneumatically conveyed solids," Measurement, Vol. 44, No. 4, 589-604, 2011.
doi:10.1016/j.measurement.2011.01.013 Google Scholar
9. Huang, Z., B. Wang, and H. Li, "Application of electrical capacitance tomography to the void fraction measurement of two-phase flow," IEEE Transactions on Instrumentation and Measurement, Vol. 52, No. 1, 7-12, 2003.
doi:10.1109/TIM.2003.809087 Google Scholar
10. Soleimani, M., V. Stewart, and C. Budd, "Crack detection in dielectric objects using electrical capacitance tomography imaging," Insight, Non-Destructive Testing and Condition Monitoring, Vol. 53, No. 1, 21-24, 2011.
doi:10.1784/insi.2011.53.1.21 Google Scholar
11. Hajihashemi, M. R. and M. El-Shenawee, "Inverse scattering of three-dimensional PEC objects using the level-set method," Progress In Electromagnetics Research, Vol. 116, 23-47, 2011. Google Scholar
12. Ma, L. and M. Soleimani, "Electromagnetic imaging for internal and external inspection of metallic pipes," Insight, Non-Destructive Testing and Condition Monitoring, Vol. 54, No. 9, 493-495, 2012.
doi:10.1784/insi.2012.54.9.493 Google Scholar
13. Ma, L., H. Y. Wei, and M. Soleimani, "Pipeline inspection using magnetic induction tomography based on a narrowband pass filtering method," Progress In Electromagnetics Research M, Vol. 23, 65-78, 2012.
doi:10.2528/PIERM11111109 Google Scholar
14. Peng, L., J. Ye, G. Lu, and W. Yang, "Evaluation of effect of number of electrodes in electrical capacitance tomography sensors on image quality," IEEE Sensors Journal, 1554-565, 2011. Google Scholar
15. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202 Google Scholar
16. Park, W.-K., "On the imaging of thin dielectric inclusions via topological derivative concept," Progress In Electromagnetics Research, Vol. 110, 237-252, 2010.
doi:10.2528/PIER10101305 Google Scholar
17. Banasiak, R., R. Wajman, D. Sankowski, and M. Soleimani, "Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model," Progress In Electromagnetics Research, Vol. 100, 219-234, 2010.
doi:10.2528/PIER09111201 Google Scholar
18. Soleimani, M., "Numerical modeling and analysis of the forward and inverse problems in electrical capacitance tomography," International Journal of Information and System Sciences, Vol. 1, No. 1, 193-207, 2005. Google Scholar
19. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805 Google Scholar
20. Jantan, A. B., R. S. A. Raja Abdullah, R. Mahmood, S. A. AlShehri, S. Khatun, and Z. Awang, "3D experimental detection and discrimination of malignant and benign breast tumor using NN-based UWB imaging system," Progress In Electromagnetics Research, Vol. 116, 221-237, 2011. Google Scholar
21. Ren, S., W. Chang, T. Jin, and Z. Wang, "Automated SAR reference image preparation for navigation," Progress In Electromagnetics Research, Vol. 121, 535-555, 2011.
doi:10.2528/PIER11091405 Google Scholar
22. Lei, J., S. Liu, Z. H. Li, and M. Sun, "Image reconstruction algorithm based on the extended regularized total least squares method for electrical capacitance tomography," IET Sci. Meas. Technol., Vol. 2, No. 5, 326-336, 2008.
doi:10.1049/iet-smt:20080029 Google Scholar
23. Zhao, J., J. Liu, Z. Li, W. Fu, and X. Li, "Image reconstruction algorithm based on updated sensitivity field for ECT," Computer Engineering and Applications, Vol. 48, No. 4, 2012. Google Scholar
24. Roberts, B. A. and A. C. Kak, "Reflection mode diffraction tomography," Ultrasonic Imaging, Vol. 7, No. 4, 300-320, 1985.
doi:10.1177/016173468500700403 Google Scholar
25. Salerno, E., "Microwave tomography of lossy objects from monostatic measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 7, 986-994, 1999.
doi:10.1109/22.775430 Google Scholar
26. Hansen, P. C., "Rank-defficient and discrete ill-posed problems: Numerical aspects of linear inversion," Society for Industria and Applied Mathematics, Vol. 4, 1987. Google Scholar
27. Wei, H.-Y. and M. Soleimani, "Three-dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm," Progress In Electromagnetics Research, Vol. 122, 29-45, 2012.
doi:10.2528/PIER11091513 Google Scholar
28. Wei, H.-Y. and M. Soleimani, "Two-phase low conductivity flow imaging using magnetic induction tomography," Progress In Electromagnetics Research, Vol. 131, 99-115, 2012. Google Scholar
29. Wei, H.-Y. and M. Soleimani, "Four dimensional reconstruction using magnetic induction tomography: Experimental study," Progress In Electromagnetics Research, Vol. 129, 17-32, 2012. Google Scholar
30. Cataldo, A., G. Cannazza, E. De Benedetto, and N. Giaquinto, "Experimental validation of a TDR-based system for measuring leak distances in buried metal pipes," Progress In Electromagnetics Research, Vol. 132, 71-90, 2012. Google Scholar
31. Xing, S., D. Dai, Y. Li, and X. Wang, "Arimetric SAR tomography using L2,1 mixed norm sparse reconstruction method," Progress In Electromagnetics Research, Vol. 130, 105-130, 2012. Google Scholar
32. Wang, J., Z. Zhao, J. Song, X. Zhu, Z.-P. Nie, and Q. H. Liu, "Reconstruction of microwave absorption properties in heterogeneous tissue for microwave-induced thermo-acoustic tomography," Progress In Electromagnetics Research, Vol. 130, 225-240, 2012. Google Scholar
33. Kuznetsov, S. A., A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.
doi:10.2528/PIER11101401 Google Scholar
34. Liu, Z., Q. H. Liu, C.-H. Zhu, and J. Yang, "A fast inverse polynomial reconstruction method based on conformal fourier transformation," Progress In Electromagnetics Research, Vol. 122, 119-136, 2012.
doi:10.2528/PIER11092008 Google Scholar
35. Chen, J., J. Gao, Y. Zhu, W. Yang, and P. Wang, "A novel image formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna," Progress In Electromagnetics Research, Vol. 125, 527-543, 2012.
doi:10.2528/PIER11121101 Google Scholar