1. Grosjean, T., D. Courjon, and C. Bainier, "Smallest lithographic masks generated by optical focusing systems," Opt. Lett., Vol. 32, 976-978, 2007.
doi:10.1364/OL.32.000976 Google Scholar
2. Kim, W., N. Park, Y. Yoon, H. Choi, and Y. Park, "Investigation of near-field imaging characteristics of radial polarization for application to optical data storage," Opt. Rev., Vol. 14, 236-242, 2007.
doi:10.1007/s10043-007-0236-5 Google Scholar
3. Quabis, S., R. Dorn, M. Eberler, O. Glockl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Commun., Vol. 179, 1-7, 2000.
doi:10.1016/S0030-4018(99)00729-4 Google Scholar
4. Grosjean, T. and D. Courjon, "Smallest focal spots," Opt. Commun., Vol. 272, 314-319, 2007.
doi:10.1016/j.optcom.2006.11.043 Google Scholar
5. Pazynin, L. A. and G. O. Kryvchikova, "Focusing properties of Maxwell's fish eye medium," Progress In Electromagnetics Research, Vol. 131, 425-440, 2012. Google Scholar
6. Dorn, R., S. Quabis, and G. Leuchs, "Sharper focus for radially polarized light beam," Phys. Rev. Lett., Vol. 91, 233901, 2003.
doi:10.1103/PhysRevLett.91.233901 Google Scholar
7. Martinez-Corral, M., R. Martinez-Cuenca, I. Escobar, and G. Saavedra, "Reduction of focus size in tightly focused linearly polarized beams," Appl. Phys. Lett., Vol. 85, 4319-4321, 2004.
doi:10.1063/1.1818729 Google Scholar
8. Khonina, S. and I. Golub, "Optimization of focusing of linearly polarized light," Opt. Lett., Vol. 36, 352-354, 2011.
doi:10.1364/OL.36.000352 Google Scholar
9. Li, X., Y. Ye, and Y. Jin, "Impedance-mismatched hyperlens with increasing layer thicknesses," Progress In Electromagnetics Research, Vol. 118, 273-286, 2011.
doi:10.2528/PIER11042005 Google Scholar
10. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368 Google Scholar
11. Rogers, E. T. F., J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, "A super-oscillatory lens optical microscope for subwavelength imaging," Nat. Materials, Vol. 11, 432-435, 2012.
doi:10.1038/nmat3280 Google Scholar
12. Zhang, Y. and M. A. Fiddy, "Covered image of superlens," Progress In Electromagnetics Research, Vol. 136, 225-238, 2013. Google Scholar
13. Cao, P., X. Zhang, W.-J. Kong, L. Cheng, and H. Zhang, "Superresolution enhancement for the superlens with anti-reflection and phase control coating via surface plasmonsmodes of asymmetric structure," Progress In Electromagnetics Research, Vol. 119, 191-206, 2011.
doi:10.2528/PIER11053010 Google Scholar
14. Yan, W., J.-D. Xu, N.-J. Li, and W. Tan, "A novel fast near-field electromagnetic imaging method for full rotation problem," Progress In Electromagnetics Research, Vol. 120, 387-401, 2011. Google Scholar
15. Wang, H., L. Shi, G. Yuan, X. Miao, W. Tan, and T. Chong, "Subwavelength and super-resolution nondiffraction beam," Appl. Phys. Lett., Vol. 89, 171102, 2006.
doi:10.1063/1.2364693 Google Scholar
16. Wang, H., L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, "Creation of a needle of longitudinally polarized light in vacuum using binary optics ," Nat. Photonics, Vol. 2, 501-505, 2008.
doi:10.1038/nphoton.2008.127 Google Scholar
17. Kuang, C., X. Hao, X. Liu, T. Wang, and Y. Ku, "Formation of sub-half-wavelength focal spot with ultra long depth of focus," Opt. Commun., Vol. 284, 1766-1769, 2011.
doi:10.1016/j.optcom.2010.12.055 Google Scholar
18. Lerman, G. and U. Levy, "Effect of radial polarization and apodization on spot size under tight focusing conditions," Opt. Express, Vol. 16, 4567-4581, 2008.
doi:10.1364/OE.16.004567 Google Scholar
19. Richards, B. and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. London Ser. A, Vol. 253, 358-379, 1959.
doi:10.1098/rspa.1959.0200 Google Scholar