1. Malek, F., H. Nornikman, and O. Nadiah, "Pyramidal microwave absorber design from waste material using rice husk and rubber tire dust," Journal of Telecommunication, Electronic and Computer Engineering, Vol. 4, No. 1, 2012. Google Scholar
2. Cheng, E. M., M. F. B. A. Malek, M. Ahmed, K. Y. You, K. Y. Lee, and H. Nornikman, "The use of dielectric mixture equations to analyze the dielectric properties of a mixture of rubber tire dust and rice husks in a microwave absorber," Progress In Electromagnetics Research, Vol. 129, 559-578, 2012. Google Scholar
3. Nornikman, H., M. F. B. A. Malek, P. J. Soh, A. A. H. Azremi, F. H. Wee, and A. Hasnain, "Parametric study of pyramidal microwave absorber using rice husk," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010. Google Scholar
4. Nornikman, H., M. F. B. A. Malek, M. Ahmed, F. H. Wee, P. J. Soh, A. A. H. Azremi, S. A. Ghani, A. Hasnain, and M. N. Taib, "Setup and results of pyramidal microwave absorbers using rice husks," Progress In Electromagnetics Research, Vol. 111, 141-161, 2011. Google Scholar
5. Iqbal, M. N., M. F. B. A. Malek, S. H. Ronald, M. S. Bin Mezan, K. M. Juni, and R. Chat, "A study of the emc performance of a graded-impedance, microwave, rice-husk absorber," Progress In Electromagnetics Research, Vol. 131, 19-44, 2012. Google Scholar
6. Malek, F., E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A. Abdul Aziz, A. R. Othman, P. J. Soh, A. A. H. Azremi, A. Hasnain, and M. N. Taib, "Rubber tire dust-rice husk pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 117, 449-477, 2011. Google Scholar
7. Liu, Q. and X. Li, "Study on the microwave permeability of the CNT complex in 2-18 GHz," Applied Physics Research, Vol. 2, No. 2, 185, 2010. Google Scholar
8. Chojnacki, E., Q. Huang, A. K. Mukherjee, et al. "Microwave absorption properties of carbon nanotubes dispersed in alumina ceramic," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 659, No. 1, 49-54, 2011. Google Scholar
9. Ghasemi, A., "Remarkable influence of carbon nanotubes on microwave absorption characteristics of strontium ferrite/CNT nanocomposites," Journal of Magnetism and Magnetic Materials, Vol. 323, No. 23, 3133-3137, 2011. Google Scholar
10. Hou, C., T. Li, T. Zhao, et al. "Microwave absorption and mechanical properties of La(NO3)3-doped multi-walled carbon nanotube/polyvinyl chloride composites," Materials Letters, Vol. 67, No. 1, 84-87, 2012. Google Scholar
11. Liu, G., L. Wang, G. Chen, et al. "Enhanced electromagnetic absorption properties of carbon nanotubes and zinc oxide whisker microwave absorber," Journal of Alloys and Compounds, Vol. 514, 183-188, 2012. Google Scholar
12. Liu, J., Y. Wang, Z. Qu, et al. "2-μm passive q-switched mode-locked tm3+: Yap laser with single-walled carbon nanotube absorber," Optics & Laser Technology, Vol. 44, No. 4, 960-962, 2012. Google Scholar
13. Zhu, H., L. Zhang, L. Zhang, et al. "Electromagnetic absorption properties of Sn-filled multi-walled carbon nanotubes synthesized by pyrolyzing," Materials Letters, Vol. 64, No. 3, 227-230, 2010. Google Scholar
14. Arjmand, M., M. Mahmoodi, G. A. Gelves, et al. "Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate," Carbon, Vol. 49, No. 11, 3430-3440, 2011. Google Scholar
15. Gupta, A. and V. Choudhary, "Electromagnetic interference shielding behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites," Composites Science and Technology, Vol. 71, No. 13, 1563-1568, 2011. Google Scholar
16. Kim, Y.-Y., J. Yun, H.-I. Kim, et al. "Effect of oxyfluorination on electromagnetic interference shielding of polypyrrole-coated multi-walled carbon nanotubes," Journal of Industrial and Engineering Chemistry, Vol. 18, No. 1, 392-398, 2012. Google Scholar
17. Nam, I. W., H. K. Kim, and H. K. Lee, "Influence of silica fume additions on electromagnetic interference shielding effectiveness of multi-walled carbon nanotube/cement composites," Construction and Building Materials, Vol. 30, 480-487, 2012. Google Scholar
18. Singh, A. P., B. K. Gupta, M. Mishra, et al. "Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties," Carbon, Vol. 56, 86-96, 2013. Google Scholar
19. Likodimos, V., S. Glenis, N. Guskos, and C. L. Lin, "Magnetic and electronic properties of multiwall carbon nanotubes," Physical Review B, Vol. 68, No. 4, 68, 2003. Google Scholar
20. Liu, W.-W., A. Aziz, S.-P. Chai, et al. "Preparation of iron oxide nanoparticles supported on magnesium oxide for producing high-quality single-walled carbon nanotubes," Carbon, Vol. 50, No. 1, 342, 2012. Google Scholar
21. Liu, W.-W., A. Aziz, S.-P. Chai, et al. "The effect of carbon precursors (methane, benzene and camphor) on the quality of carbon nanotubes synthesised by the chemical vapour decomposition," Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 8, 1535-1542, 2011. Google Scholar
22. Cha, S. I., K. T. Kim, K. H. Lee, et al. "Mechanical and electrical properties of cross-linked carbon nanotubes," Carbon, Vol. 46, No. 3, 482-488, 2008. Google Scholar
23. Logakis, E., C. H. Pandis, P. Pissis, et al. "Highly conducting poly (methyl methacrylate)/carbon nanotubes composites: Investigation on their thermal, dynamic-mechanical, electrical and dielectric properties," Composites Science and Technology, Vol. 71, No. 6, 854-862, 2011. Google Scholar
24. Spitalsky, Z., D. Tasis, K. Papagelis, et al. "Carbon nanotube-polymer composites: Chemistry, processing, and electrical properties," Progress in Polymer Science, Vol. 35, No. 3, 357-401, 2010. Google Scholar
25. Wang, X., Q. Jiang, W. Xu, et al. "Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites," Carbon, Vol. 53, 145-152, 2013. Google Scholar
26. Sinha, N. and J. T.-W. Yeow, "Carbon nanotubes for biomedical applications," IEEE Transactions on Nanobioscience, Vol. 4, No. 2, 2005. Google Scholar
27. Wong, E. W., P. E. Sheehan, and C. M. Lieber, "Nanobeam mechanics: Elasticity, strength, and toughness of nanotubes and nanorods," Science, Vol. 277, 1971-1975, 1997. Google Scholar
28. Li, S., R. Chen, S. Anwar, W. Lu, Y. Lai, H. Chen, B. Hou, F. Ren, and B. Gu, "Applying effective medium theory in characterizing dielectric constant of solids," Progress In Electromagnetics Research Letters, Vol. 35, 145-153, 2012. Google Scholar
29. Hasa, U. C., "Microwave method for thickness-independent permittivity extraction of low-loss dielectric materials from transmission measurements," Progress In Electromagnetics Research, Vol. 110, 453-467, 2010. Google Scholar
30. Kumar, A. and G. Singh, "Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies," Progress In Electromagnetics Research, Vol. 69, 47-54, 2007. Google Scholar
31. Sabouroux, P. and D. Ba, "Epsimu, a tool for dielectric properties measurement of porous media: Application in wet granular materials characterization," Progress In Electromagnetics Research B, Vol. 29, 191-207, 2011. Google Scholar
32. Nornikman, H., B. H. Ahmad, M. Z. A. Abdul Aziz, M. F. B. A. Malek, H. Imran, and A. R. Othman, "Study and simulation of an edge couple split ring resonator (EC-SRR) on truncated pyramidal microwave absorber," Progress In Electromagnetics Research, Vol. 127, 319-334, 2012. Google Scholar
33. Wang, Y. and M. N. Afsar, "Measurement of complex permittivity of liquids using waveguide techniques," Progress In Electromagnetics Research, Vol. 42, 131-142, 2003. Google Scholar
34. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011. Google Scholar
35. Fallahzadeh, S., K. Forooraghi, and Z. Atlasbaf, "Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 35, 135-14, 2012. Google Scholar
36. Zivkovic, I. and A. Murk, "Characterization of magnetically loaded microwave absorbers," Progress In Electromagnetics Research B, Vol. 33, 277-289, 2011. Google Scholar
37. Zivkovic, I. and A. Murk, "Characterization of open cell SIC foam material," Progress In Electromagnetics Research B, Vol. 38, 225-239, 2012. Google Scholar
38. Lee, H.-M. and H. Lee, "A dual-band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012. Google Scholar
39. Zhang, H., S. Y. Tan, and H. S. Tan, "Experimental study on a flanged parallel-plate dielectric waveguide probe for detection of buried inclusions," Progress In Electromagnetics Research, Vol. 111, 91-104, 2011. Google Scholar
40. Hemming, L. H., Electromagnetic Anechoic Chambers: A Fundamental Design and Specification Guide, Wiley, 2002.
41. Baker, G. S. and H. M. Jol, Stratigraphic Analyses Using Ground Penetrating Radar, Geological Society of America, Incorporated, 2007.