1. Fried, I. and D. S. Malkus, "Finite element mass matrix lumping by numerical integration with no convergence rate loss," International Journal of Solids and Structures, Vol. 11, No. 4, 461-466, 1975.
doi:10.1016/0020-7683(75)90081-5 Google Scholar
2. Tordjman, N., "Elements finis d'order eleve avec condensation de masse pour l'equation des ondes,", Ph.D. Thesis, L'Universite Paris IX Dauphine, 1995. Google Scholar
3. Cohen, G., P. Joly, and N. Tordjman, "Higher order triangular finite elements with mass lumping for the wave equation," Proceedings of the Third International Conference on Mathematical and Numerical Aspects of Wave Propagation, G. Cohen, E. Becache, P. Joly, and J. E. Roberts, Eds., 270-279, SIAM, Philadelphia, 1995. Google Scholar
4. Mulder, W. A., "A comparison between higher-order finite elements and finite differences for solving the wave equation," Proceedings of the Second ECCOMAS Conference on Numerical Methods in Engineering, J.-A. Desideri, E. Onate P. Le Tallec, J. Periaux, E. Stein, (eds.), 344-350, John Wiley & Sons, Chichester, 1996. Google Scholar
5. Chin-Joe-Kong, M. J. S., W. A. Mulder, and M. van Veldhuizen, "Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation," Journal of Engineering Mathematics, Vol. 35, No. 4, 405-426, 1999.
doi:10.1023/A:1004420829610 Google Scholar
6. Giraldo, F. X. and M. A. Taylor, "A diagonal-mass-matrix triangular-spectral-element method based on cubature points," Journal of Engineering Mathematics, Vol. 56, No. 3, 307-322, 2006.
doi:10.1007/s10665-006-9085-7 Google Scholar
7. Lyness, J. N. and D. Jespersen, "Moderate degree symmetric quadrature rules for the triangle," Journal of the Institute of Mathematics and Its Applications, Vol. 15, 19-32, 1975.
doi:10.1093/imamat/15.1.19 Google Scholar
8. Keast, P., "Cubature formulas for the surface of the sphere," Journal of Computational and Applied Mathematics, Vol. 17, No. 1-2, 151-172, 1987.
doi:10.1016/0377-0427(87)90044-6 Google Scholar
9. Heo, S. and Y. Xu, "Constructing fully symmetric cubature formulae for the sphere," Mathematics of Computation, Vol. 70, No. 233, 269-279, 2001.
doi:10.1090/S0025-5718-00-01198-4 Google Scholar
10. Keast, P. and J. C. Diaz, "Fully symmetric integration formulas for the surface of the sphere in s dimensions," SIAM Journal on Numerical Analysis, Vol. 20, No. 2, 406-419, 1983.
doi:10.1137/0720029 Google Scholar
11. Keast, P., "Moderate-degree tetrahedral quadrature formulas," Computer Methods in Applied Mechanics and Engineering, Vol. 55, No. 3, 339-348, 1986.
doi:10.1016/0045-7825(86)90059-9 Google Scholar
12. Cohen, G., P. Joly, J. E. Roberts, and N. Tordjman, "Higher order triangular finite elements with mass lumping for the wave equation," SIAM Journal on Numerical Analysis, Vol. 38, No. 6, 2047-2078, 2001.
doi:10.1137/S0036142997329554 Google Scholar
13. Mulder, W. A., "Higher-order mass-lumped finite elements for the wave equation," Journal of Computational Acoustics, Vol. 9, No. 2, 671-680, 2001.
doi:10.1142/S0218396X0100067X Google Scholar
14. Courant, R., K. Friedrichs, and H. Lewy, "Uber die partiellen Differenzengleichungen der mathematischen Physik," Mathematische Annalen, Vol. 100, No. 1, 32-74, 1928.
doi:10.1007/BF01448839 Google Scholar
15. Zhebel, E., S. Minisini, A. Kononov, and W. A. Mulder, "Solving the 3D acoustic wave equation with higher-order mass-lumped tetrahedral finite elements," 73rd EAGE Conference & Exhibition, Extended Abstracts, A010, Vienna, Austria, May 2011. Google Scholar
16. Jund, S. and S. Salmon, "Arbitrary high-order finite element schemes and high-order mass lumping," International Journal of pplied Mathematics and Computer Science, Vol. 17, No. 3, 375-393, 2007. Google Scholar
17. Lax, P. and B. Wendroff, "Systems of conservation laws," Communications on Pure and Applied Mathematics, Vol. 31, No. 2, 217-237, 1960.
doi:10.1002/cpa.3160130205 Google Scholar
18. Shubin, G. R. and J. B. Bell, "A modified equation approach to constructing fourth order methods for acoustic wave propagation," SIAM Journal on Scientific and Statistical Computing, Vol. 8, No. 2, 135-151, 1987.
doi:10.1137/0908026 Google Scholar
19. Dablain, M. A., "The application of high-order differencing to the scalar wave equation," Geophysics, Vol. 51, No. 1, 54-66, 1986.
doi:10.1190/1.1442040 Google Scholar
20. Chen, J.-B., "Lax-Wendroff and Nystrom methods for seismic modelling," Geophysical Prospecting, Vol. 57, No. 6, 931-941, 2009.
doi:10.1111/j.1365-2478.2009.00802.x Google Scholar
21. De Basabe, J. D. and M. K. Sen, "Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping," Geophysical Journal International, Vol. 181, No. 1, 577-590, 2010.
doi:10.1111/j.1365-246X.2010.04536.x Google Scholar
22. Gilbert, J. C. and P. Joly, "Higher order time stepping for second order hyperbolic problems and optimal CFL conditions," Computational Methods in Applied Sciences, Vol. 16, 67-93, Springer, Berlin, 2008. Google Scholar
23. Koornwinder, T., "Two-variable analogues of the classical orthogonal polynomials," Theory and Application of Special Functions, R. A. Askey (ed.), 435-495, Academic Press, New York, 1975. Google Scholar
24. Dubiner, M., "Spectral methods on triangles and other domains," Journal of Scientific Computing, Vol. 6, No. 4, 345-390, 1991.
doi:10.1007/BF01060030 Google Scholar
25. Sherwin, S. J. and G. E. Karniadakis, "A new triangular and tetrahedral basis for high-order (hp) finite element methods," International Journal for Numerical Methods in Engineering, Vol. 38, No. 22, 3775-3802, 1995.
doi:10.1002/nme.1620382204 Google Scholar
26. Heinrichs, W. and B. I. Loch, "Spectral schemes on triangular elements," Journal of Computational Physics, Vol. 173, No. 1, 279-301, 2001.
doi:10.1006/jcph.2001.6876 Google Scholar
27. Bittencourt, M. L., "Fully tensorial nodal and modal shape functions for triangles and tetrahedra," International Journal for Numerical Methods in Engineering, Vol. 63, No. 11, 1530-1558, 2005.
doi:10.1002/nme.1325 Google Scholar
28. Xu, Y., "On Gauss-Lobatto integration on the triangle," SIAM Journal on Numerical Analysis, Vol. 49, No. 2, 541-548, 2011.
doi:10.1137/100792263 Google Scholar
29. Taylor, M. A., B. A. Wingate, and R. E. Vincent, "An algorithm for computing Fekete points in the triangle," SIAM Journal on Numerical Analysis, Vol. 38, No. 5, 1707-1720, 2000.
doi:10.1137/S0036142998337247 Google Scholar
30. Bos, L., M. A. Taylor, and B. A. Wingate, "Tensor product Gauss-Lobatto points are Fekete points for the cube," Mathematics of Computation, Vol. 70, No. 236, 1543-1547, 2001.
doi:10.1090/S0025-5718-00-01262-X Google Scholar
31. Pasquetti, R. and F. Rapetti, "Spectral element methods on triangles and quadrilaterals: Comparisons and applications," Journal of Computational Physics, Vol. 198, No. 1, 349-362, 2004.
doi:10.1016/j.jcp.2004.01.010 Google Scholar
32. Wingate, B. A. and M. A. Taylor, "Performance of numerically computed quadrature points," Applied Numerical Mathematics, Vol. 58, No. 7, 1030-1041, 2008.
doi:10.1016/j.apnum.2007.04.006 Google Scholar
33. Hesthaven, J. S., "From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex," SIAM Journal on Numerical Analysis, Vol. 35, No. 2, 655-676, 1998.
doi:10.1137/S003614299630587X Google Scholar
34. Shen, J., L.-L. Wang, and H. Li, "A triangular spectral element method using fully tensorial rational basis functions," SIAM Journal on Numerical Analysis, Vol. 47, No. 3, 1619-1650, 2009.
doi:10.1137/070702023 Google Scholar
35. Li, H., J. Sun, and Y. Xu, "Discrete Fourier analysis, cubature and interpolation on a hexagon and a triangle," SIAM Journal on Numerical Analysis, Vol. 46, No. 4, 1653-1681, 2008.
doi:10.1137/060671851 Google Scholar
36. Riviere, B. and M. F. Wheeler, "Discontinuous finite element methods for acoustic and elastic wave problems," Contemporary Mathematics, Vol. 329, 271-282, 1999. Google Scholar
37. De Basabe, J. D., M. K. Sen, and M. F. Wheeler, "The interior penalty discontinuous Galerkin method for elastic wave propagation: Grid dispersion," Geophysical Journal International, Vol. 175, No. 1, 83-93, 2008.
doi:10.1111/j.1365-246X.2008.03915.x Google Scholar
38. Kaser, M. and M. Dumbser, "An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - I. The two-dimensional isotropic case with external source terms," Geophysical Journal International, Vol. 166, No. 2, 855-877, 2006.
doi:10.1111/j.1365-246X.2006.03051.x Google Scholar
39. Lesage, A. C., R. Aubry, G. Houzeaux, M. Araya Polo, and J. M. Cela, "3D spectral element method combined with H-refinement," 72nd EAGE Conference & Exhibition, Extended Abstracts, C047, Barcelona, Spain, Jun. 2010. Google Scholar