1. Yablonovitch, E., "Inhibited spontaneous emission of photons in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2061, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
3. Banerjee, A., "Enhanced refractometric optical sensing by using one-dimensional ternary photonic crystals," Progress In Electromagnetics Research, Vol. 89, 11-22, 2009.
doi:10.2528/PIER08112105 Google Scholar
4. Jim, K. L., D. Y. Wang, C. W. Leung, C. L. Choy, and H. L. W. Chan, "One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films," J. Appl. Phys., Vol. 103, 083107, 2008.
doi:10.1063/1.2907418 Google Scholar
5. Tanabe, T., M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Low mode volume slotted photonic crystal single nanobeam cavity," Appl. Phys. Lett., Vol. 97, 151112, 2005.
doi:10.1063/1.2089185 Google Scholar
6. Sirigiri, J. R., K. E. Kreischer, J. Machuzak, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, "Photonic-band-gap resonator gyrotron," Phys. Rev. Lett., Vol. 86, 5628, 2001.
doi:10.1103/PhysRevLett.86.5628 Google Scholar
7. Smirnova, E. I., A. S. Kesar, I. Mastovsky, M. A. Shapiro, and R. J. Temkin, "Demonstration of a 17 GHz, high-gradient accelerator with a photonic-band-gap structure," Phys. Rev. Lett., Vol. 95, 074801, 2005.
doi:10.1103/PhysRevLett.95.074801 Google Scholar
8. Zhang, H. F., M. Li, and S. B. Liu, "Study periodic band gap structure of the magnetized plasma photonic crystals," Optelectron Lett., Vol. 5, 112-116, 2009.
doi:10.1007/s11801-009-8165-0 Google Scholar
9. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and Y. Dai, "Omnidirectional photonic band gaps enlarged by Fibonacci quasi-periodic one-dimensional ternary superconductor photonic crystals," Solid State Commun., Vol. 152, 2113-2119, 2012.
doi:10.1016/j.ssc.2012.09.009 Google Scholar
10. Kuzmiak, V. and A. A. Maradudin, "Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components," Phy. Rev. B, Vol. 58, 7230-7251, 1998.
doi:10.1103/PhysRevB.58.7230 Google Scholar
11. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one dimensional plasma photonic crystals," Plasma Fusion Res., Vol. 80, 89-90, 2004.
doi:10.1585/jspf.80.89 Google Scholar
12. Sakai, O. and K. Tachibana, "Plasma as metamaterial: A review," Plasma Sources Sci. Technol., Vol. 21, 013001, 2012.
doi:10.1088/0963-0252/21/1/013001 Google Scholar
13. Ginzberg, V. L., The Propagation of Electromagnetic Waves in Plasmas, Pergamon, Pergamon, New York, 1970.
14. Qi, L. and Z. Yang, "Modified plane wave method analysis of dielectric plasma photonic crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.
doi:10.2528/PIER09022605 Google Scholar
15. Guo, B., "Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal," Phys. Plasmas, Vol. 16, 043508, 2009.
doi:10.1063/1.3116642 Google Scholar
16. Li, C., S. Liu, X. Kong, H. Zhang, B. Bian, and X. Zhang, "A novel comb-like plasma photonic crystals filter in the presence of evanescent wave," IEEE Trans. Plasma Sci., Vol. 39, 1969-1973, 2011.
doi:10.1109/TPS.2011.2162653 Google Scholar
17. Zhang, H. F., S. B. Liu, and X. K. Kong, "Enlarged the omnidirectional band gap in one-dimensional plasma photonic crystals with ternary Thue-Morse aperiodic structure," Physica B, Vol. 410, 244-250, 2013.
doi:10.1016/j.physb.2012.10.025 Google Scholar
18. Zhang, H. F., S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bian, "Enlarged omnidirectional photonic photonic band gap in heterostructure of plasma and dielectric photonic crystals," Optik, Vol. 124, 751-756, 2013.
doi:10.1016/j.ijleo.2012.01.025 Google Scholar
19. Shiverhwari, L., "Zero permittivity band characteristics in one-dimensional plasma dielectric photonic crystals," Optik, Vol. 122, 1523-1526, 2011.
doi:10.1016/j.ijleo.2010.09.036 Google Scholar
20. Sakaguchi, T., O. Sakai, and K. Tachibana, "Photonic bands in two-dimensional microplasma array II. Band gaps observed in millimeter and sub-terahertz ranges," J. Appl. Phys., Vol. 101, 073305, 2007.
doi:10.1063/1.2713940 Google Scholar
21. Sakai, O., T. Sakaguchi, and K. Tachibana, "Photonic bands in two-dimensional mircoplasma array I. Theoretical derivation of band structure of electromagnetic waves," J. Appl. Phys., Vol. 101, 073304, 2007.
doi:10.1063/1.2713939 Google Scholar
22. Fan, W. and L. Dong, "Tunable one-dimensional plasma photonic crystals in dielectric barrier discharge," Phys. Plasmas, Vol. 17, 073506, 2010.
doi:10.1063/1.3456520 Google Scholar
23. Guo, B., "Photonic band gap structures of obliquely incident electromagnetic wave propagation in a one-dimension absorptive plasma photonic crystal," Phys. Plasmas, Vol. 16, 043508, 2009.
doi:10.1063/1.3116642 Google Scholar
24. Liu, S. B., C. Q. Gu, J. J. Zhou, and N. C. Yuan, "FDTD simulation for magnetized plasma photonic crystals," Acta Physica Sinica, Vol. 55, 1283-1288, 2006. Google Scholar
25. Zhang, H. F., L. Ma, and S. B. Liu, "Defect mode properties of magnetized plasma photonic crystals," Acta Physica Sinica, Vol. 58, 01071-01075, 2009. Google Scholar
26. Zhang, H. F., S. B. Liu, X. K. Kong, L. Zou, C. Z. Li, and W. S. Qing, "Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer," Phys. Plasmas, Vol. 19, 022103, 2012.
doi:10.1063/1.3680628 Google Scholar
27. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and Y. Dai, "Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure," Phys. Plasmas, Vol. 19, 122102, 2012.
doi:10.1063/1.4769128 Google Scholar
28. Qi, L., Z. Yang, and T. Fu, "Defect modes in one-dimensional magnetized plasma photonic crystals with a dielectric defect layer," Phys. Plasmas, Vol. 19, 012509, 2012.
doi:10.1063/1.3677876 Google Scholar
29. Zhang, H. F., S. B. Liu, and X. K. Kong, "Photonic band gaps in one-dimensional magnetized plasma photonic crystals with arbitrary declination," Phys. Plasmas, Vol. 19, 122103, 2012.
doi:10.1063/1.4766474 Google Scholar
30. Hamidi, S. M., "Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals," Phys. Plasmas, Vol. 19, 012503, 2012.
doi:10.1063/1.3677263 Google Scholar
31. Mehdian, H., Z. Mohammadzahery, and A. Hasanbeigi, "Analysis of plasma-magnetic photonic crystals with a tunable band gap," Phys. Plasmas, Vol. 20, 043505, 2013.
doi:10.1063/1.4795306 Google Scholar
32. Qi, L., "Photonic band structures of two-dimensional magnetized plasma photonic crystals," J. Appl. Phys., Vol. 111, 073301, 2012.
doi:10.1063/1.3699213 Google Scholar
33. Zhang, H. F., X. K. Kong, and S. B. Liu, "Analysis of the properties of tunable prohibited band gaps for two-dimensional unmagnetized plasma photonic crystals under TM mode," Acta Physica Sinica, Vol. 60, 055209, 2011. Google Scholar
34. Zhang, H. F., S. B. Liu, and X. K. Kong, "Defect mode properties of two-dimensional unmagnetized plasma photonic crystals with line-defect under transverse magnetic mode," Acta Physica Sinica, Vol. 60, 025215, 2011. Google Scholar
35. Fu, T., Z. Yang, Z. Shi, F. Lan, D. Li, and X. Gao, "Dispersion properties of a 2D magnetized plasma metallic photonic crystals," Phys. Plasmas, Vol. 20, 023109, 2013.
doi:10.1063/1.4792264 Google Scholar
36. Zhang, H. F., S. B. Liu, X. K. Kong, B. R. Bian, and Y. N. Guo, "Dispersion properties of two-dimensional plasma photonic crystals with periodically external magnetic field," Solid State Commun., Vol. 152, 1221-1229, 2012.
doi:10.1016/j.ssc.2012.04.055 Google Scholar
37. Qi, L. and X. Zhang, "Band gap characteristics of plasma with periodically varying external magnetic field," Solid State Commun., Vol. 151, 1838-1841, 2011.
doi:10.1016/j.ssc.2011.08.012 Google Scholar
38. Zhang, H. F., S. B. Liu, X. K. Kong, and B. R. Bian, "The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice," Optic Commun., Vol. 288, 82-90, 2013.
doi:10.1016/j.optcom.2012.09.078 Google Scholar
39. Zhang, H. F., S. B. Liu, X. K. Kong, and B. R. Bian, "The properties of photonic band gaps for three-dimensional plasma photonic crystals in a diamond structure," Phys. Plasmas, Vol. 20, 042110, 2013.
doi:10.1063/1.4801043 Google Scholar
40. Zhang, H. F., S. B. Liu, and X. K. Kong, "Dispersion properties of three-dimensional plasma photonic crystals in diamond lattice arrangement," J. Lightwave Technol., Vol. 17, 1694-1702, 2013.
doi:10.1109/JLT.2013.2256879 Google Scholar
41. Zhang, H. F., S. B. Liu, and B. X. Li, "The properties of photonic band gaps for three-dimensional tunable photonic crystals with simple-cubic lattices doped by magnetized plasma," Optics & Laster Technology, Vol. 50, 93-102, 2013.
doi:10.1016/j.optlastec.2013.02.011 Google Scholar
42. Zhang, H. F., S. B. Liu, H. Yang, and X. K. Kong, "Analysis of photonic band gap in dispersive properties of tunable three-dimensional photonic crystals doped by magnetized plasma," Phys. Plasmas, Vol. 20, 032118, 2013.
doi:10.1063/1.4798523 Google Scholar
43. Li, Z. Y., J. Wang, and B. Y. Gu, "Creation of partial gaps in anisotropic photonic-band-gap structures," Phy. Rev. B, Vol. 58, 3721-3729, 1998.
doi:10.1103/PhysRevB.58.3721 Google Scholar
44. Malkova, N., S. Kim, T. Dilazaro, and V. Gopalan, "Symmetrical analysis of complex two-dimensional hexagonal photonic crystals," Phys. Rev. B, Vol. 67, 125203, 2003.
doi:10.1103/PhysRevB.67.125203 Google Scholar
45. Li, Z. Y., B. Y. Gu, and G. Y. Yang, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett., Vol. 81, 2574-2577, 1998.
doi:10.1103/PhysRevLett.81.2574 Google Scholar
46. Li, Z. and L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E, Vol. 67, 056702, 2003.
doi:10.1103/PhysRevE.67.056702 Google Scholar
47. Marrone, M., V. F. Rodriguez-Esquerre, and H. E. Hernandez-Figueroa, "Novel numerical method for the analysis of 2D photonic crystals: The cell method," Opt. Exp., Vol. 10, 1299-1304, 2002.
doi:10.1364/OE.10.001299 Google Scholar
48. Jun, S., Y. S. Cho, and S. Im, "Moving least-square method for the band-structure calculation of 2D photonic crystals," Opt. Exp., Vol. 11, 541-551, 2003.
doi:10.1364/OE.11.000541 Google Scholar
49. Chiang, P., C. Yu, and H. Chang, "Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method," Phys. Rev. E, Vol. 75, 026703, 2003.
doi:10.1103/PhysRevE.75.026703 Google Scholar
50. Lou, M., Q. H. Liu, and Z. Li, "Spectral element method for band structures of three-dimensional anisotropic photonic crystals," Phys. Rev. E, Vol. 80, 56702, 2012. Google Scholar
51. Zhang, H. F., S. B. Liu, X. K. Kong, L. Zhou, C. Z. Li, and B. R. Bo, "Comment on `photonic bands in two-dimensional microplasma array. I. Theoretical derivation of band structures of electromagnetic wave'," J. Appl. Phys., Vol. 110, 026104, 2011.
doi:10.1063/1.3605490 Google Scholar