1. Xu, W., P. P. Huang, and Y. K. Deng, "Multi-channel SPCMB-TOPS SAR for high resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011. Google Scholar
2. Gebert, N., G. Krieger, and A. Moreira, "Multichannel azimuth processing in ScanSAR and TOPS mode operation," IEEE Trans. Geosci. Remote Sensing, Vol. 48, No. 7, 2994-3008, 2010.
doi:10.1109/TGRS.2010.2041356 Google Scholar
3. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Publishing House of Electronics Industry, 2007.
4. Huang, P., W. Xu, and W. Qi, "Two dimension digital beamforming preprocessing in multibeam scan SAR," Progress In Electromagnetics Research, Vol. 136, 495-508, 2013. Google Scholar
5. Carrara, W., R. Goodman, and R. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithm, Artech House, Boston, 1995.
6. Guo, D. M., H. P. Xu, and J. W. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011. Google Scholar
7. Gebert, N., Multi-channel Azimuth Processing for High-resolution Wide-swath SAR Imaging, DLR, Bibliotheks und Informationswesen, 2009.
8. Jenq, Y.-C., "Perfect reconstruction of digital spectrum from nonuniformly sampled signals," IEEE Transactions on Instrumentation and Measurement, Vol. 46, No. 3, 649-652, 1997.
doi:10.1109/19.585419 Google Scholar
9. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
10. Candes, E., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083 Google Scholar
11. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," Proc. IEEE Radar Conf., 128-133, Waltham, MA, Apr. 2007. Google Scholar
12. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805 Google Scholar
13. Zhang, X., J. Qin, and G. Li, "SAR target classification using Bayesian compressive sensing with scattering centers features," Progress In Electromagnetics Research, Vol. 136, 385-407, 2013. Google Scholar
14. Chen, J., J. H. Gao, Y. Q. Zhu, W. Yang, and P. B. Wang, "A novel image formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna," Progress In Electromagnetics Research, Vol. 125, 527-542, 2012.
doi:10.2528/PIER11121101 Google Scholar
15. Zhang, L., M. D. Xing, C. W. Qiu, et al. "Achieving higher resolution ISAR imaging with limited pulses via compressed sensing in sparse aperture imaging of radar," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 3, 567-571, 2009.
doi:10.1109/LGRS.2009.2021584 Google Scholar
16. Alonso, M. T., P. Lopez-Dekker, and J. J. Mallorqui, "A novel strategy for radar imaging based on compressive sensing," IEEE Geosci. Remote Sens. Lett., Vol. 42, No. 18, 4285-4295, 2010. Google Scholar
17. Baraniuk, R., "Compressive sensing," IEEE Signal Process., Vol. 24, No. 4, 118-121, 2007.
doi:10.1109/MSP.2007.4286571 Google Scholar
18. Candes, E., "Compressive sampling," Proc. Int. Congr. Math., Vol. 3, 1433-1452, 2006. Google Scholar
19. Candes, J., "The restricted isometry property and its implications for compressed sensing," Comptes Rendus Mathematique, Vol. 346, No. 9, 589-592, Paris, 2008.
doi:10.1016/j.crma.2008.03.014 Google Scholar
20. Candes, E., J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Commun. Pure Appl. Math., Vol. 59, No. 8, 1207-1223, 2006.
doi:10.1002/cpa.20124 Google Scholar
21. Chen, S., D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev., Vol. 43, No. 1, 129-159, 1998.
doi:10.1137/S003614450037906X Google Scholar
22. Eldar, Y. C. and G. Kutyniok, Compressed Sensing: Theory and Applications, Cambridge University Press, 2012.
23. Davis, G., S. Mallat, and M. Avellaneda, "Adaptive greedy approximations," Constr. Approx., Vol. 13, No. 1, 57-98, 1997. Google Scholar
24. Tropp, J. and A. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108 Google Scholar
25. Blumensath, T. and M. Davies, "Iterative hard thresholding for comressive sensing," Appl. Comput. Harmon. Anal., Vol. 27, No. 3, 265-274, 2009.
doi:10.1016/j.acha.2009.04.002 Google Scholar
26. Brusch, S., S. Lehner, T. Fritz, M. Soccorsi, A. Soloviev, and B. van Schie, "Ship surveillance with TerraSAR-X," IEEE Trans. Geosci. Remote Sensing, Vol. 49, No. 3, 1092-1103, 2011.
doi:10.1109/TGRS.2010.2071879 Google Scholar
27. Kim, J.-H., M. Younis, P. Prats-Iraola, M. Gabele, and G. Krieger, "First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression," IEEE Trans. Geosci. Remote Sensing, Vol. 51, No. 1, 579-590, 2013.
doi:10.1109/TGRS.2012.2201947 Google Scholar
28. Krieger, G., N. Gebert, and A. Moreira, "Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling," IEEE Geosci. Remote Sens. Lett., Vol. 1, No. 4, 260-264, 2004.
doi:10.1109/LGRS.2004.832700 Google Scholar
28. Brule, L. and H. Baeggli, "Radarsat-2 program update," Proc. IGARSS, Vol. 2, 1186-1189, 2002. Google Scholar