Vol. 141
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-31
Azimuth Multichannel SAR Imaging Based on Compressed Sensing
By
Progress In Electromagnetics Research, Vol. 141, 497-516, 2013
Abstract
Azimuth multichannel is a promising technique of realizing high resolution and wide swath for synthetic aperture radar (SAR) imaging, which consequently leads to extremely high data rate on satellite downlink system and confronts serious ambiguity in subsequent processing due to its strict limitation of pulse repetition frequency (PRF). Ambiguity suppression performance of conventional spectrum construction is disappointing when the samples are approximately overlapped. To overcome these weaknesses, a novel sparse sampling scheme for displaced phase center antennas based on compressed sensing (CS) is proposed in this paper. The imaging strategy sparsely sampled in both range and azimuth direction, leading to a significant reduction of the system data amount beyond the Nyquist theorem, and then operated the CS technique in two dimensions to accomplish target reconstruction. Effectiveness of the proposed approach was validated through simulation and real data experiment. Simulation results and analysis indicated that the new imaging strategy could provide several favorable capability than conventional imaging algorithm such as less sampled data, better ambiguity suppression, higher resolution, and lower integrated side-lobe ratio (ISLR).
Citation
Mingjiang Wang, Weidong Yu, and Robert Wang, "Azimuth Multichannel SAR Imaging Based on Compressed Sensing," Progress In Electromagnetics Research, Vol. 141, 497-516, 2013.
doi:10.2528/PIER13052205
References

1. Xu, W., P. P. Huang, and Y. K. Deng, "Multi-channel SPCMB-TOPS SAR for high resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.

2. Gebert, N., G. Krieger, and A. Moreira, "Multichannel azimuth processing in ScanSAR and TOPS mode operation," IEEE Trans. Geosci. Remote Sensing, Vol. 48, No. 7, 2994-3008, 2010.
doi:10.1109/TGRS.2010.2041356

3. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Publishing House of Electronics Industry, 2007.

4. Huang, P., W. Xu, and W. Qi, "Two dimension digital beamforming preprocessing in multibeam scan SAR," Progress In Electromagnetics Research, Vol. 136, 495-508, 2013.

5. Carrara, W., R. Goodman, and R. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithm, Artech House, Boston, 1995.

6. Guo, D. M., H. P. Xu, and J. W. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

7. Gebert, N., Multi-channel Azimuth Processing for High-resolution Wide-swath SAR Imaging, DLR, Bibliotheks und Informationswesen, 2009.

8. Jenq, Y.-C., "Perfect reconstruction of digital spectrum from nonuniformly sampled signals," IEEE Transactions on Instrumentation and Measurement, Vol. 46, No. 3, 649-652, 1997.
doi:10.1109/19.585419

9. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

10. Candes, E., J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inf. Theory, Vol. 52, No. 2, 489-509, 2006.
doi:10.1109/TIT.2005.862083

11. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," Proc. IEEE Radar Conf., 128-133, Waltham, MA, Apr. 2007.

12. Wei, S. J., X. L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
doi:10.2528/PIER10080805

13. Zhang, X., J. Qin, and G. Li, "SAR target classification using Bayesian compressive sensing with scattering centers features," Progress In Electromagnetics Research, Vol. 136, 385-407, 2013.

14. Chen, J., J. H. Gao, Y. Q. Zhu, W. Yang, and P. B. Wang, "A novel image formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna," Progress In Electromagnetics Research, Vol. 125, 527-542, 2012.
doi:10.2528/PIER11121101

15. Zhang, L., M. D. Xing, C. W. Qiu, et al. "Achieving higher resolution ISAR imaging with limited pulses via compressed sensing in sparse aperture imaging of radar," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 3, 567-571, 2009.
doi:10.1109/LGRS.2009.2021584

16. Alonso, M. T., P. Lopez-Dekker, and J. J. Mallorqui, "A novel strategy for radar imaging based on compressive sensing," IEEE Geosci. Remote Sens. Lett., Vol. 42, No. 18, 4285-4295, 2010.

17. Baraniuk, R., "Compressive sensing," IEEE Signal Process., Vol. 24, No. 4, 118-121, 2007.
doi:10.1109/MSP.2007.4286571

18. Candes, E., "Compressive sampling," Proc. Int. Congr. Math., Vol. 3, 1433-1452, 2006.

19. Candes, J., "The restricted isometry property and its implications for compressed sensing," Comptes Rendus Mathematique, Vol. 346, No. 9, 589-592, Paris, 2008.
doi:10.1016/j.crma.2008.03.014

20. Candes, E., J. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Commun. Pure Appl. Math., Vol. 59, No. 8, 1207-1223, 2006.
doi:10.1002/cpa.20124

21. Chen, S., D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev., Vol. 43, No. 1, 129-159, 1998.
doi:10.1137/S003614450037906X

22. Eldar, Y. C. and G. Kutyniok, Compressed Sensing: Theory and Applications, Cambridge University Press, 2012.

23. Davis, G., S. Mallat, and M. Avellaneda, "Adaptive greedy approximations," Constr. Approx., Vol. 13, No. 1, 57-98, 1997.

24. Tropp, J. and A. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inf. Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108

25. Blumensath, T. and M. Davies, "Iterative hard thresholding for comressive sensing," Appl. Comput. Harmon. Anal., Vol. 27, No. 3, 265-274, 2009.
doi:10.1016/j.acha.2009.04.002

26. Brusch, S., S. Lehner, T. Fritz, M. Soccorsi, A. Soloviev, and B. van Schie, "Ship surveillance with TerraSAR-X," IEEE Trans. Geosci. Remote Sensing, Vol. 49, No. 3, 1092-1103, 2011.
doi:10.1109/TGRS.2010.2071879

27. Kim, J.-H., M. Younis, P. Prats-Iraola, M. Gabele, and G. Krieger, "First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression," IEEE Trans. Geosci. Remote Sensing, Vol. 51, No. 1, 579-590, 2013.
doi:10.1109/TGRS.2012.2201947

28. Krieger, G., N. Gebert, and A. Moreira, "Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling," IEEE Geosci. Remote Sens. Lett., Vol. 1, No. 4, 260-264, 2004.
doi:10.1109/LGRS.2004.832700

28. Brule, L. and H. Baeggli, "Radarsat-2 program update," Proc. IGARSS, Vol. 2, 1186-1189, 2002.