Vol. 142
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-09-06
A Dispersive Conformal FDTD Technique for Accurate Modeling Electromagnetic Scattering of THz Waves by Inhomogeneous Plasma Cylinder Array
By
Progress In Electromagnetics Research, Vol. 142, 353-368, 2013
Abstract
A dispersive conformal FDTD method has been proposed to accurately model the interface between two adjacent dispersive mediums and implemented to study the scattering of THz electromagnetic (EM) waves by inhomogeneous collisional plasma cylinder array. The method is based on the technology of area average, which is different from existing dispersive conformal FDTD schemes. Numerical results show that the proposed method enhance the accuracy level compared to the staircasing FDTD scheme involved in the inhomogeneous plasma. It is interesting to find that the THz EM waves can propagate through the plasma array more easily with higher frequencies or larger separations, hence the scattering width in the backward direction becomes smaller, and the forward scattering exhibits a little difference. This study will be useful for further designing intelligent plasma antenna arrays in THz band and terahertz reentry telemetry through plasma.
Citation
Xia Ai Yuan Tian Zhiwei Cui Yiping Han Xiao-Wei Shi , "A Dispersive Conformal FDTD Technique for Accurate Modeling Electromagnetic Scattering of THz Waves by Inhomogeneous Plasma Cylinder Array," Progress In Electromagnetics Research, Vol. 142, 353-368, 2013.
doi:10.2528/PIER13052409
http://www.jpier.org/PIER/pier.php?paper=13052409
References

1. Casey, K., "Radiation through an inhomogeneous reentry plasma layer," IEEE Transactions on Antennas and Propagation,, Vol. 19, No. 5, 711-712, 1971.
doi:10.1109/TAP.1971.1140022

2. Stewart, G., "Laboratory simulation of reentry plasma sheaths," IEEE Transactions on Antennas and Propagation, Vol. 15, No. 6, 831-832, 1967.
doi:10.1109/TAP.1967.1139033

3. Shi, L., B. Guo, Y. Liu, and J. Li, "Characteristic of plasma sheath channel and its effect on communication," Progress In Electromagnetics Research, Vol. 123, 321-336, 2012.
doi:10.2528/PIER11110201

4. Rayner, J. P., A. P. Whichello, and A. D. Cheetham, "Physical characteristics of plasma antennas," IEEE Transactions on Plasma Science, Vol. 32, No. 1, 269-281, 2004.
doi:10.1109/TPS.2004.826019

5. Alexeff, I., T. Anderson, S. Parameswaran, E. P. Pradeep, J. Hulloli, and P. Hulloli, "Experimental and theoretical results with plasma antennas," IEEE Transactions on Plasma Science, Vol. 34, No. 2, 166-172, 2006.
doi:10.1109/TPS.2006.872180

6. Alexeff, I., T. Anderson, and E. Farshi, "Recent results for plasma antennas," Physics of Plasmas, Vol. 15, 057104-4, 2008.

7. Kuz'min, G., I. Minaev, K. Rukhadze, V. Tarakanov, and O. Tikhonevich, "Reflector plasma array antennas," Journal of Communications Technology and Electronics, Vol. 57, No. 5, 536-542, 2012.
doi:10.1134/S1064226912040110

8. Wu, X. P., J.-M. Shi, Z. S. Chen, and B. Xu, "A new plasma antenna of beam-forming," Progress In Electromagnetics Research, Vol. 126, 539-553, 2012.
doi:10.2528/PIER12021906

9. Kohler, R., A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature, Vol. 417, 156-159, 2002.
doi:10.1038/417156a

10. Bartel, T., P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, "Generation of single-cycle THz transients with high electric-field amplitudes," Optics Letters, Vol. 30, No. 20, 2805-2807, 2005.
doi:10.1364/OL.30.002805

11. Yang, L., B. Rosam, and M. M. Dignam, "Density-dependent terahertz emission in biased semiconductor superlattices: From Bloch oscillations to plasma oscillations," Physical Review B, Vol. 72, 115313, 2005.
doi:10.1103/PhysRevB.72.115313

12. Liu, J. and X. C. Zhang, "Terahertz-radiation-enhanced emission of °uorescence from gas plasma," Physical Review Letters, Vol. 103, No. 23, 235002, Dec. 4, 2009.
doi:10.1103/PhysRevLett.103.235002

13. Jamison, S. P., J. Shen, D. R. Jones, R. C. Issac, B. Ersfeld, D. Clark, and D. A. Jaroszynski, "Plasma characterization with Terahertz time-domain measurements," Journal of Applied Physics, Vol. 93, No. 7, 4334-4336, 2003.
doi:10.1063/1.1560564

14. Yuan, C., Z. Zhou, X. Xiang, H. Sun, and S. Pu, "Propagation of broadband terahertz pulses through a dense-magnetized-collisional-bounded plasma layer," Physics of Plasmas, Vol. 17, 113304-113307, 2010.
doi:10.1063/1.3515895

15. Yuan, C., Z. Zhou, J. W. Zhang, X. Xiang, Y. Feng, and H. Sun, "FDTD analysis of terahertz wave propagation in a high-temperature unmagnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 39, No. 7, 1577-1584, 2011.
doi:10.1109/TPS.2011.2151207

16. Kim, J. J., D. G. Jang, M. S. Hur, H. Jang, and H. Suk, "Relativistic terahertz pulse generation by non-linear interaction of a high-power fs laser with underdense plasmas," Journal of Physics D: Applied Physics, Vol. 45, 395201-395205, 2012.
doi:10.1088/0022-3727/45/39/395201

17. Oh, T. I., Y. S. You, and K. Y. Kim, "Two-dimensional plasma current and optimized terahertz generation in two-color photoionization," Optics Express, Vol. 20, No. 18, 19778-19786, 2012.
doi:10.1364/OE.20.019778

18. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 2000..

19. Wahl, P., D. S. Ly Gagnon, C. Debaes, J. Van Erps, N. Vermeulen, D. A. Miller, and H. Thienpont, "B-calm: An open-source multi-GPU-based 3D-FDTD with multi-pole dispersion for plasmonics," Progress In Electromagnetics Research, Vol. 138, 467-478, 2013.

20. Markovich, D. L., K. S. Ladutenko, and P. A. Belov, "Performance of FDTD method CPU implementations for simulation of eletromagnetic processes," Progress In Electromagnetics Research, Vol. 139, 655-670, 2013.

21. Luebbers, R., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, No. 3, 222-227, 1990.
doi:10.1109/15.57116

22. Sullivan, D. M., "Frequency-dependent FDTD methods using Z transforms," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 10, 1223-1230, 1992.
doi:10.1109/8.182455

23. Gandhi, O. P., B. Q. Gao, and J. Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 4, 658-665, 1993.
doi:10.1109/22.231661

24. Hulse, C. and A. Knoesen, "Dispersive models for the finite-difference time-domain method: Design, analysis, and implementation," implementation (Optics and Image Science), Vol. 11, No. 6, 1802-1811, 1994.

25. Chun, K., H. Kim, H. Kim, and Y. Chung, "PLRC and ADE implementations of drude-critical point dispersive model for the FDTD method," Progress In Electromagnetics Research, Vol. 135, 373-390, 2013.

26. Kaneda, N., B. Houshmand, and T. Itoh, "FDTD analysis of dielectric resonators with curved surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 9, 1645-1649, 1997.
doi:10.1109/22.622937

27. Supriyo, D. and R. Mittra, "A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 9, 1737-1739, 1999.
doi:10.1109/22.788616

28. Yu, W. H. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 1, 25-2, Jan. 2001.
doi:10.1109/7260.905957

29. Wang, J., W. Yin, P. Liu, and Q. Liu, "High-order interface treatment techniques for modeling curved dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 2946-2953, 2010.
doi:10.1109/TAP.2010.2052562

30. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702

31. Mohammadi, A., H. Nadgaran, and M. Agio, "Contour-path effective permittivities for the two-dimensional finite-difference time-domain method," Optics Express, Vol. 13, No. 25, 10367-10381, 2005.
doi:10.1364/OPEX.13.010367

32. Mohammadi, A. and M. Agio, "Dispersive contour-path finite-difference time-domain algorithm for modelling surface plasmon polaritons at flat interfaces," Optics Express, Vol. 14, No. 23, 11330-11338, 2006.
doi:10.1364/OE.14.011330

33. Mohammadi, A., T. Jalali, and M. Agio, "Dispersive contour-path algorithm for the two-dimensional finite-difference time-domain method," Optics Express, Vol. 16, No. 10, 7397-7406, 2008.
doi:10.1364/OE.16.007397