1. Casey, K., "Radiation through an inhomogeneous reentry plasma layer," IEEE Transactions on Antennas and Propagation,, Vol. 19, No. 5, 711-712, 1971.
doi:10.1109/TAP.1971.1140022 Google Scholar
2. Stewart, G., "Laboratory simulation of reentry plasma sheaths," IEEE Transactions on Antennas and Propagation, Vol. 15, No. 6, 831-832, 1967.
doi:10.1109/TAP.1967.1139033 Google Scholar
3. Shi, L., B. Guo, Y. Liu, and J. Li, "Characteristic of plasma sheath channel and its effect on communication," Progress In Electromagnetics Research, Vol. 123, 321-336, 2012.
doi:10.2528/PIER11110201 Google Scholar
4. Rayner, J. P., A. P. Whichello, and A. D. Cheetham, "Physical characteristics of plasma antennas," IEEE Transactions on Plasma Science, Vol. 32, No. 1, 269-281, 2004.
doi:10.1109/TPS.2004.826019 Google Scholar
5. Alexeff, I., T. Anderson, S. Parameswaran, E. P. Pradeep, J. Hulloli, and P. Hulloli, "Experimental and theoretical results with plasma antennas," IEEE Transactions on Plasma Science, Vol. 34, No. 2, 166-172, 2006.
doi:10.1109/TPS.2006.872180 Google Scholar
6. Alexeff, I., T. Anderson, and E. Farshi, "Recent results for plasma antennas," Physics of Plasmas, Vol. 15, 057104-4, 2008. Google Scholar
7. Kuz'min, G., I. Minaev, K. Rukhadze, V. Tarakanov, and O. Tikhonevich, "Reflector plasma array antennas," Journal of Communications Technology and Electronics, Vol. 57, No. 5, 536-542, 2012.
doi:10.1134/S1064226912040110 Google Scholar
8. Wu, X. P., J.-M. Shi, Z. S. Chen, and B. Xu, "A new plasma antenna of beam-forming," Progress In Electromagnetics Research, Vol. 126, 539-553, 2012.
doi:10.2528/PIER12021906 Google Scholar
9. Kohler, R., A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature, Vol. 417, 156-159, 2002.
doi:10.1038/417156a Google Scholar
10. Bartel, T., P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, "Generation of single-cycle THz transients with high electric-field amplitudes," Optics Letters, Vol. 30, No. 20, 2805-2807, 2005.
doi:10.1364/OL.30.002805 Google Scholar
11. Yang, L., B. Rosam, and M. M. Dignam, "Density-dependent terahertz emission in biased semiconductor superlattices: From Bloch oscillations to plasma oscillations," Physical Review B, Vol. 72, 115313, 2005.
doi:10.1103/PhysRevB.72.115313 Google Scholar
12. Liu, J. and X. C. Zhang, "Terahertz-radiation-enhanced emission of °uorescence from gas plasma," Physical Review Letters, Vol. 103, No. 23, 235002, Dec. 4, 2009.
doi:10.1103/PhysRevLett.103.235002 Google Scholar
13. Jamison, S. P., J. Shen, D. R. Jones, R. C. Issac, B. Ersfeld, D. Clark, and D. A. Jaroszynski, "Plasma characterization with Terahertz time-domain measurements," Journal of Applied Physics, Vol. 93, No. 7, 4334-4336, 2003.
doi:10.1063/1.1560564 Google Scholar
14. Yuan, C., Z. Zhou, X. Xiang, H. Sun, and S. Pu, "Propagation of broadband terahertz pulses through a dense-magnetized-collisional-bounded plasma layer," Physics of Plasmas, Vol. 17, 113304-113307, 2010.
doi:10.1063/1.3515895 Google Scholar
15. Yuan, C., Z. Zhou, J. W. Zhang, X. Xiang, Y. Feng, and H. Sun, "FDTD analysis of terahertz wave propagation in a high-temperature unmagnetized plasma slab," IEEE Transactions on Plasma Science, Vol. 39, No. 7, 1577-1584, 2011.
doi:10.1109/TPS.2011.2151207 Google Scholar
16. Kim, J. J., D. G. Jang, M. S. Hur, H. Jang, and H. Suk, "Relativistic terahertz pulse generation by non-linear interaction of a high-power fs laser with underdense plasmas," Journal of Physics D: Applied Physics, Vol. 45, 395201-395205, 2012.
doi:10.1088/0022-3727/45/39/395201 Google Scholar
17. Oh, T. I., Y. S. You, and K. Y. Kim, "Two-dimensional plasma current and optimized terahertz generation in two-color photoionization," Optics Express, Vol. 20, No. 18, 19778-19786, 2012.
doi:10.1364/OE.20.019778 Google Scholar
18. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 2000..
19. Wahl, P., D. S. Ly Gagnon, C. Debaes, J. Van Erps, N. Vermeulen, D. A. Miller, and H. Thienpont, "B-calm: An open-source multi-GPU-based 3D-FDTD with multi-pole dispersion for plasmonics," Progress In Electromagnetics Research, Vol. 138, 467-478, 2013. Google Scholar
20. Markovich, D. L., K. S. Ladutenko, and P. A. Belov, "Performance of FDTD method CPU implementations for simulation of eletromagnetic processes," Progress In Electromagnetics Research, Vol. 139, 655-670, 2013. Google Scholar
21. Luebbers, R., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, No. 3, 222-227, 1990.
doi:10.1109/15.57116 Google Scholar
22. Sullivan, D. M., "Frequency-dependent FDTD methods using Z transforms," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 10, 1223-1230, 1992.
doi:10.1109/8.182455 Google Scholar
23. Gandhi, O. P., B. Q. Gao, and J. Y. Chen, "A frequency-dependent finite-difference time-domain formulation for general dispersive media," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 4, 658-665, 1993.
doi:10.1109/22.231661 Google Scholar
24. Hulse, C. and A. Knoesen, "Dispersive models for the finite-difference time-domain method: Design, analysis, and implementation," implementation (Optics and Image Science), Vol. 11, No. 6, 1802-1811, 1994. Google Scholar
25. Chun, K., H. Kim, H. Kim, and Y. Chung, "PLRC and ADE implementations of drude-critical point dispersive model for the FDTD method," Progress In Electromagnetics Research, Vol. 135, 373-390, 2013. Google Scholar
26. Kaneda, N., B. Houshmand, and T. Itoh, "FDTD analysis of dielectric resonators with curved surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 9, 1645-1649, 1997.
doi:10.1109/22.622937 Google Scholar
27. Supriyo, D. and R. Mittra, "A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 9, 1737-1739, 1999.
doi:10.1109/22.788616 Google Scholar
28. Yu, W. H. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 1, 25-2, Jan. 2001.
doi:10.1109/7260.905957 Google Scholar
29. Wang, J., W. Yin, P. Liu, and Q. Liu, "High-order interface treatment techniques for modeling curved dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 2946-2953, 2010.
doi:10.1109/TAP.2010.2052562 Google Scholar
30. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702 Google Scholar
31. Mohammadi, A., H. Nadgaran, and M. Agio, "Contour-path effective permittivities for the two-dimensional finite-difference time-domain method," Optics Express, Vol. 13, No. 25, 10367-10381, 2005.
doi:10.1364/OPEX.13.010367 Google Scholar
32. Mohammadi, A. and M. Agio, "Dispersive contour-path finite-difference time-domain algorithm for modelling surface plasmon polaritons at flat interfaces," Optics Express, Vol. 14, No. 23, 11330-11338, 2006.
doi:10.1364/OE.14.011330 Google Scholar
33. Mohammadi, A., T. Jalali, and M. Agio, "Dispersive contour-path algorithm for the two-dimensional finite-difference time-domain method," Optics Express, Vol. 16, No. 10, 7397-7406, 2008.
doi:10.1364/OE.16.007397 Google Scholar