Vol. 141
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-24
A Fast Simulation Method of Silicon Nanophotonic Echelle Gratings and Its Applications in the Design of on-Chip Spectrometers
By
Progress In Electromagnetics Research, Vol. 141, 369-382, 2013
Abstract
Due to their very high integration density, echelle grating spectrometers based on silicon nanophotonic platforms have received great attention for their applications in many areas, such as optical sensors, optical communications, and optical interconnections. The design of echelle gratings requires an effective modeling and simulation technique. Though we have used a boundary integral method to accurately analyze the polarization-dependent performance of the echelle grating, it is complicated and time-consuming for the simulation due to its large size and aperiodic structure. In the present paper, we will present a faster simulation method for the grating with twice total internal reflection facets based on a modified Kirchhoff-Huygens principle with the influence of the Goos-Hachen shift considered. On the one hand, the presented simulation results agree well with our previous results obtained by the boundary integral method when the shift can accurately be calculated using a FDTD method. On the other hand, the biggest advantage of the new method over the existing methods is that it can also provide an insightful physical explanation for many numerical results. Finally, we will effectively apply the present method to design an on-chip spectrometer with very low noise floor.
Citation
Jun Song, Linchun Chen, and Bojun Li, "A Fast Simulation Method of Silicon Nanophotonic Echelle Gratings and Its Applications in the Design of on-Chip Spectrometers," Progress In Electromagnetics Research, Vol. 141, 369-382, 2013.
doi:10.2528/PIER13052801
References

1. Song, J., Y. Z. Li, X. Zhou, and X. Li, "Planar grating multiplexers using silicon nanowire technology: Numerical simulations and fabrications," Progress In Electromagnetics Research, Vol. 123, 509-526, 2012.
doi:10.2528/PIER11110402

2. Song, J., Y. Z. Li, X. Zhou, and X. Li, "A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip," IEEE Photonics Journal, Vol. 4, 317-326, 2012.
doi:10.1109/JPHOT.2012.2188097

3. Miller, D. A. B., "Device requirements for optical interconnects to silicon chips," Proceedings of the IEEE, Vol. 97, 1166-1185, 2009.
doi:10.1109/JPROC.2009.2014298

4. Butt, H., Q. Dai, T. D. Wilkinson, and G. A. J. Amaratunga, "Photonic crystals & metamaterial filters based on 2D arrays of silicon nanopillars," Progress In Electromagnetics Research, Vol. 113, 179-194, 2011.

5. Gemio, J., J. Parron, P. de Paco, J. Sacristan, and A. Baldi, "Improving silicon integrated antennas by substrate micromachining: A study of etching patterns," Progress In Electromagnetics Research, Vol. 117, 365-378, 2011.

6. Yao, Y. C., M. T. Tsai, P. W. Lu, C. J. Wu, and Y. J. Lee, "Effect of nanostructured architecture on the enhanced optical absorption in silicon thin-film solar cells," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 13, 1798-1807, 2012.
doi:10.1080/09205071.2012.713189

7. Song, J. and J. F. Ding, "Amorphous-Si-based planar grating demultiplexers with total internal reflection grooves," Electronics Letters, Vol. 45, 905-906, 2009.
doi:10.1049/el.2009.0789

8. Brouckaert, J. B., W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, "Planar concave grating demultiplexer fabricated on a nanophotonic silicon-on-insulator platform," IEEE Photon. Technol. Lett., Vol. 25, 1269-1271, 2007.

9. Sidick, E., A. Knoesen, and J. N. Mait, "Design and rigorous analysis of high-efficiency array generators," Appl. Opt., Vol. 32, 2599-2605, 1993.
doi:10.1364/AO.32.002599

10. Zhang, Z. and W. Dou, "Binary diffractive small lens array for Thz imaging system," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 2-3, 177-187, 2011.
doi:10.1163/156939311794362821

11. Khaleel, S. and C . S. Gurel, "A new narrowband multilayer DWDM optical filter in the order of defected Fibonacci sequence," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1930-1938, 2012.
doi:10.1080/09205071.2012.721185

12. Frances, J. M., C. Neipp, A. Marquez Ruiz, A. Belendez, and I. Pascual, "Analysis of reflection gratings by means of a matrix method approach," Progress In Electromagnetics Research, Vol. 118, 167-183, 2011.
doi:10.2528/PIER11050403

13. Edee, M. K., I. Fenniche, G. Granet, and B. Guizal, "Modal method based on subsectional gegenbauer polynomial expansion for lamellar gratings: Weighting function, convergence and stability," Progress In Electromagnetics Research, Vol. 133, 17-35, 2013.

14. Wu, J. J. and B. R. Shi, "Frequency response of silicon-clad proton-exchanged channel waveguides," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 651-659, 2011.
doi:10.1163/156939311794827122

15. Lee, D. J., S. J. Lee, W. S. Lee, and J. W. Yu, "Diffraction by dielectric-loaded multiple slits in a conducting plane: TM case," Progress In Electromagnetics Research, Vol. 131, 409-424, 2012.

16. Cao, T. and M. J. Cryan, "Circular dichroism in planar nonchiral metamaterial made of elliptical nanoholes array," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 10, 1275-1282, 2012.
doi:10.1080/09205071.2012.697849

17. Tasinkevych, Y., "Electromagnetic scattering by periodic grating of PEC bars," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 641-650, 2011.
doi:10.1163/156939311794827203

18. Rodriguez-Gonzalez, J. A. and F. J. Ares-Pena, "Design of planar arrays composed by an active dipole above a ground plane with parasitic elements," Progress In Electromagnetics Research, Vol. 119, 265-277, 2011.
doi:10.2528/PIER11071105

19. Baqir, M. A. and P. K. Choudhury, "On the energy flux through a uniaxial chiral metamaterial made circular waveguide under PMC boundary," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 16, 2165-2175, 2012.
doi:10.1080/09205071.2012.729299

20. Dong, W., L. Gao, and C. W. Qiu, "Goos-Hanchen shift at the surface of chiral negative refractive media," Progress In Electromagnetics Research, Vol. 90, 255-268, 2009.
doi:10.2528/PIER08122002

21. Hunsperger, R. G., Integrated Optics: Theory and Technology, 2nd Edition, 89, Springer-Verlag, 2009.

22. Artmann, K., "Berechnung der Seitenversetzung des totalreflektierten Strahles," Annalen der Physik, Vol. 437, 87-102, 1948.
doi:10.1002/andp.19484370108

23. Lai, H. M., F. C. Cheng, and W. K. Tang, "Goos-Hanchen effect round and off the critical angle," J. Opt. Soc. Am. A, Vol. 3, 550-557, 1986.
doi:10.1364/JOSAA.3.000550

24. Lai, H. M., C. W. Kwok, Y. W. Loo, and B. Y. Xu, "Energy-flux pattern in the Goos-HÄanchen effect," Phys. Rev. E, Vol. 62, 7330-7339, 2000.
doi:10.1103/PhysRevE.62.7330

25. Shi, J. L., C. F. Li, and Q. Wang, "Theory of the Goos-Hanchen displacement in total internal reflection," Int. J. Mod. Phys. B, Vol. 21, 2777-2791, 2007.
doi:10.1142/S0217979207037326

26. Kong, Y. D. and Q. X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
doi:10.2528/PIER11082512

27. Xiong, R., B. Chen, Y. F. Mao, and Q. Chen, "Thin-slot formalism for the FDTD analysis of narrow apertures having depth," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1857-1863, 2012.
doi:10.1080/09205071.2012.716937

28. Shi, Z., J. J. He, and S. He, "An analytic method for designing passband flattened DWDM demultiplexers using spatial phase modulation," Journal of Lightwave Technology, Vol. 21, 2314-2321, 2003.

29. Mantawy, A. H., Y. L. Abdel-Magid, and S. Z. Selim, "A simulated annealing algorithm for unit commitment," IEEE Transactions on Power Systems, Vol. 13, 197-204, 1998.
doi:10.1109/59.651636