Vol. 142
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-08-25
Semi-Analytical Solutions of the 3-D Homogeneous Helmholtz Equation by the Method of Connected Local Fields
By
Progress In Electromagnetics Research, Vol. 142, 159-188, 2013
Abstract
We advance the theory of the two-dimensional method of connected local fields (CLF) to the three-dimensional cases. CLF is suitable for obtaining semi-analytical solutions of Helmholtz equation. The fundamental building block (cell) of the 3-D CLF is a cube consisting of a central point and twenty six points on the cube's surface. These surface points form three symmetry groups: six on the planar faces, twelve on the edges, and eight on the vertices (corners). The local field within the unit cell is expanded in a truncated spherical Fourier-Bessel series. From this representation we develop a closed-form, 3-D local field expansion (LFE) coefficients that relate the central point to its immediate neighbors. We also compute the CLF-based FD-FD numerical solutions of the 3D Green's function in free space. Compared with the analytic solution, we found that even at a low three points per wavelength spatial sampling, the accumulated phase errors of the CLF 3D Green's function after propagating a distance of ten wavelengths are well under ten percent.
Citation
Hung-Wen Chang Sin-Yuan Mu , "Semi-Analytical Solutions of the 3-D Homogeneous Helmholtz Equation by the Method of Connected Local Fields," Progress In Electromagnetics Research, Vol. 142, 159-188, 2013.
doi:10.2528/PIER13060906
http://www.jpier.org/PIER/pier.php?paper=13060906
References

1. Chang, H.-W., Y.-H. Wu, and W.-C. Cheng, "Hybrid FD-FD analysis of crossing waveguides by exploiting both the plus and the cross structural symmetry," Progress In Electromagnetics Research, Vol. 103, 217-240, 2010.
doi:10.2528/PIER10030202

2. Yu, C.-P. and H. C. Chang, "Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals," Optics Express, Vol. 12, 1397-1408, 2004.
doi:10.1364/OPEX.12.001397

3. Smith, G. D., Numerical Solution of Partial Differential Equations, 2nd edition, Oxford University Press, 1978.

4. Jo, C.-H., C. Shin, and J. H. Suh, "An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator," Geophysics, Vol. 61, 529-537, 1996.
doi:10.1190/1.1443979

5. Smith, v, Numerical Solution of Partial Differential Equations, 2nd edition, Oxford University Press, 1978.

6. Hadley, G. R., "High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces," Journal of Lightwave Technology, Vol. 20, No. 7, 1219-1231, 2002.
doi:10.1109/JLT.2002.800371

7. Hadley, G. R., "High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners," Journal of Lightwave Technology, Vol. 20, No. 7, 1210-1218, 2002.
doi:10.1109/JLT.2002.800361

8. Tsukerman, I., "Electromagnetic applications of a new finite-difference calculus," IEEE Transactions on Magnetics, Vol. 41, No. 7, 2206-2225, 2005.
doi:10.1109/TMAG.2005.847637

9. Singer, I. and E. Turkel, "Sixth order accurate finite difference schemes for the Helmholtz equation," Journal of Computational Acoustics, Vol. 14, 339-351, 2006.
doi:10.1142/S0218396X06003050

10. Chang, H.-W. and S.-Y. Mu, "Semi-analytical solutions of the 2-D homogeneous Helmholtz equation by the method of connected local fields," Progress In Electromagnetics Research, Vol. 109, 399-424, 2010.
doi:10.2528/PIER10092807

11. Mu, S.-Y. and H.-W. Chang, "Theoretical foundation for the method of connected local fields," Progress In Electromagnetics Research, Vol. 114, 67-88, 2011.

12. Young, D. M. and J. H. Dauwalder, Discrete Representations of Partial Differential Equations, Errors in Digital Computation, Academic Press, New York, 1965.

13. Sutmann, G., "Compact finite difference schemes of sixth order for the Helmholtz equation," Journal of Computational and Applied Mathematics, Vol. 203, 15-31, 2007.
doi:10.1016/j.cam.2006.03.008

14. Fernandes, D. T. and A. F. D. Loula, "Quasi optimal finite difference method for Helmholtz problem on unstructured grids," Int. J. Numer. Meth. Engng., Vol. 82, 1244-1281, 2010.

15. Chang, H.-W. and S.-Y. Mu, "3-D LFE-27 formulae for the method of connected local fields,", OPTIC-2012, OB-SA-BL1, Taipei, Taiwan, 2012.

16. Hall, C. A. and T. A. Porsching, Numerical Analysis of Partial Differential Equations, 248-250, Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

17. Harari, I. and E. Turkel, "Accurate finite difference methods for time-harmonic wave propagation," Journal of Computational Physics, Vol. 119, No. 2, 252-270, 1995.
doi:10.1006/jcph.1995.1134

18. Spotz, W. F. and G. F. Carey, "A high-order compact formulation for the 3D Poisson equation," Numerical Methods for Partial Differential Equations, Vol. 12, No. 2, 235-243, 1996.
doi:10.1002/(SICI)1098-2426(199603)12:2<235::AID-NUM6>3.0.CO;2-R

19. Nehrbass, J. W., J. O. Jevtic, and R. Lee, "Reducing the phase error for finite-difference methods without increasing the order," IEEE Transactions on Antennas and Propagation, Vol. 46, 1194-1201, 1998.
doi:10.1109/8.718575

20. Ernst, O. G. and M. J. Gander, "Why it is difficult to solve Helmholtz problems with classical iterative methods," Lecture Notes in Computational Science and Engineering, Vol. 83, 325-363, 2012.
doi:10.1007/978-3-642-22061-6_10