1. Chang, H.-W., Y.-H. Wu, and W.-C. Cheng, "Hybrid FD-FD analysis of crossing waveguides by exploiting both the plus and the cross structural symmetry," Progress In Electromagnetics Research, Vol. 103, 217-240, 2010.
doi:10.2528/PIER10030202 Google Scholar
2. Yu, C.-P. and H. C. Chang, "Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals," Optics Express, Vol. 12, 1397-1408, 2004.
doi:10.1364/OPEX.12.001397 Google Scholar
3. Smith, G. D., Numerical Solution of Partial Differential Equations, 2nd edition, Oxford University Press, 1978.
4. Jo, C.-H., C. Shin, and J. H. Suh, "An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator," Geophysics, Vol. 61, 529-537, 1996.
doi:10.1190/1.1443979 Google Scholar
5. Smith, v, Numerical Solution of Partial Differential Equations, 2nd edition, Oxford University Press, 1978.
6. Hadley, G. R., "High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces," Journal of Lightwave Technology, Vol. 20, No. 7, 1219-1231, 2002.
doi:10.1109/JLT.2002.800371 Google Scholar
7. Hadley, G. R., "High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners," Journal of Lightwave Technology, Vol. 20, No. 7, 1210-1218, 2002.
doi:10.1109/JLT.2002.800361 Google Scholar
8. Tsukerman, I., "Electromagnetic applications of a new finite-difference calculus," IEEE Transactions on Magnetics, Vol. 41, No. 7, 2206-2225, 2005.
doi:10.1109/TMAG.2005.847637 Google Scholar
9. Singer, I. and E. Turkel, "Sixth order accurate finite difference schemes for the Helmholtz equation," Journal of Computational Acoustics, Vol. 14, 339-351, 2006.
doi:10.1142/S0218396X06003050 Google Scholar
10. Chang, H.-W. and S.-Y. Mu, "Semi-analytical solutions of the 2-D homogeneous Helmholtz equation by the method of connected local fields," Progress In Electromagnetics Research, Vol. 109, 399-424, 2010.
doi:10.2528/PIER10092807 Google Scholar
11. Mu, S.-Y. and H.-W. Chang, "Theoretical foundation for the method of connected local fields," Progress In Electromagnetics Research, Vol. 114, 67-88, 2011. Google Scholar
12. Young, D. M. and J. H. Dauwalder, Discrete Representations of Partial Differential Equations, Errors in Digital Computation, Academic Press, New York, 1965.
13. Sutmann, G., "Compact finite difference schemes of sixth order for the Helmholtz equation," Journal of Computational and Applied Mathematics, Vol. 203, 15-31, 2007.
doi:10.1016/j.cam.2006.03.008 Google Scholar
14. Fernandes, D. T. and A. F. D. Loula, "Quasi optimal finite difference method for Helmholtz problem on unstructured grids," Int. J. Numer. Meth. Engng., Vol. 82, 1244-1281, 2010. Google Scholar
15. Chang, H.-W. and S.-Y. Mu, "3-D LFE-27 formulae for the method of connected local fields,", OPTIC-2012, OB-SA-BL1, Taipei, Taiwan, 2012. Google Scholar
16. Hall, C. A. and T. A. Porsching, Numerical Analysis of Partial Differential Equations, 248-250, Prentice-Hall, Englewood Cliffs, New Jersey, 1990.
17. Harari, I. and E. Turkel, "Accurate finite difference methods for time-harmonic wave propagation," Journal of Computational Physics, Vol. 119, No. 2, 252-270, 1995.
doi:10.1006/jcph.1995.1134 Google Scholar
18. Spotz, W. F. and G. F. Carey, "A high-order compact formulation for the 3D Poisson equation," Numerical Methods for Partial Differential Equations, Vol. 12, No. 2, 235-243, 1996.
doi:10.1002/(SICI)1098-2426(199603)12:2<235::AID-NUM6>3.0.CO;2-R Google Scholar
19. Nehrbass, J. W., J. O. Jevtic, and R. Lee, "Reducing the phase error for finite-difference methods without increasing the order," IEEE Transactions on Antennas and Propagation, Vol. 46, 1194-1201, 1998.
doi:10.1109/8.718575 Google Scholar
20. Ernst, O. G. and M. J. Gander, "Why it is difficult to solve Helmholtz problems with classical iterative methods," Lecture Notes in Computational Science and Engineering, Vol. 83, 325-363, 2012.
doi:10.1007/978-3-642-22061-6_10 Google Scholar