1. Nikolova, N., "Microwave imaging for breast cancer," IEEE Microwave Magazine, 78-94, Dec. 2011.
doi:10.1109/MMM.2011.942702 Google Scholar
2. Fhager, A., S. K. Padhi, and J. Howard, "3D image reconstruction in microwave tomography using an e±cient FDTD model," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1353-1356, 2009.
doi:10.1109/LAWP.2009.2039032 Google Scholar
3. Guardiola, M., S. Capdevila, J. Romeu, and L. Jofre, "3-D microwave magnitude combined tomography for breast cancer detection using realistic breast models," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1622-1625, 2012.
doi:10.1109/LAWP.2012.2235813 Google Scholar
4. Meaney, P. M., et al. "Microwave tomography in the context of complex breast cancer imaging," Proceedings of the 32nd Annual International Conference of IEEE EMBS, 3398-3401, Aug. 2010. Google Scholar
5. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array --- Experimental results," IEEE Trans. Ant. Propag., Vol. 57, No. 6, Jun. 2009. Google Scholar
6. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Breast cancer detection based on differential ultrawideband microwave radar," Progress In Electromagnetics Research M, Vol. 20, 231-242, 2011.
doi:10.2528/PIERM11080810 Google Scholar
7. Lai, J. C. Y., C. B. Soh, E. Gunawan, and K. S. Low, "UWB microwave imaging for breast cancer detection --- Experimentals with heterogeneous breast phantoms," Progress In Electromagnetics Research M, Vol. 16, 19-29, 2011. Google Scholar
8. Flores-Tapia, D. and S. Pistorius, "Real time breast microwave radar image reconstruction using circular holography: A study of experimental feasibility," Med. Phys., Vol. 38, No. 10, 5420-5431, Oct. 2011.
doi:10.1118/1.3633922 Google Scholar
9. Zeng, X., A. Fhager, P. Linner, M. Persson, and H. Zirath, "Zeng, X., A. Fhager, P. Linner, M. Persson, and H. Zirath, Accuracy investigation of an ultra-wideband time domain microwave imaging system," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 1928-1932, Apr. 2011. Google Scholar
10. Porter, E., E. Kirshin, A. Santorelli, M. Coates, and M. Popovic, "Time-domain multistatic radar system for microwave breast screening," IEEE Antennas Wireless Propag. Lett., Vol. 12, 229-232, 2013.
doi:10.1109/LAWP.2013.2247374 Google Scholar
11. Byrne, D., "Ultrawideband radar for the early detection of cancer within the heterogeneous breast," Ph.D. Diss., 2012. Google Scholar
12. Agarwal, K., L. Pan, Y. K. Leong, M. Han, O. Y. Chan, X. Chen, and S. P. Yeo, "Practical applications of multiple signal classification," International Journal of RF and Microwave Computer-aided Engineering, Vol. 22, No. 3, 359-369, 2012.
doi:10.1002/mmce.20607 Google Scholar
13. Arnau, O., J. Freixenet, R. Marti, and R. Zwiggelaar, "A comparison of breast tissue classification techniques," Medical Image Computing and Computer-Assisted Intervention, MICCAI, 872-879, 2006. Google Scholar
14. Prasad, D. P., C. Quek, and M. K. H. Leung, "A hybrid approach for breast tissue data classification," TENCON 2009-2009 IEEE Region 10 Conference, 1-4, 2009.
doi:10.1109/TENCON.2009.5396116 Google Scholar
15. Davis, S. K., et al. "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564 Google Scholar
16. Kerhet, A., M. Raffetto, A. Boni, and A. Massa, "A SVM-based approach to microwave breast," cancer detection," Engineering Applications of Arti¯cial Intelligence, Vol. 19, 807-818, 2006.
doi:10.1016/j.engappai.2006.05.010 Google Scholar
17. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classi¯cation of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407 Google Scholar
18. Byrne, D. and Support vector machine-based ultrawide-, "Support vector machine-based ultrawide-band breast cancer detection system," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1807-1816, 2011.
doi:10.1163/156939311797454015 Google Scholar
19. Fhager, A., Y. Yu, T. McKelvey, and M. Persson, "Stroke diagnostics with a microwave helmet," Proceedings of the 7th European Conference on Antennas and Propagation (EUCAP), 845-846, Apr. 2013. Google Scholar
20. O'Halloran, M., F. Morgan, M. Glavin, E. Jones, R. C. Conceicao, and D. Byrne, "Bladder-state monitoring using ultra wideband radar," Proceedings of the 7th European Conference on Antennas and Propagation (EUCAP) , 624-627, Apr. 2013. Google Scholar
21. Conceicao, R. C., H. Medeiros, M. O'Halloran, D. Rodriguez-Herrera, D. Flores-Tapia, and S. Pistorius, "Initial classification of breast tumour phantoms using a UWB radar prototype," 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), 720-723, 2013.
doi:10.1109/ICEAA.2013.6632339 Google Scholar
22. Kanj, H. and M. Popovic, "A novel ultra-compact broadband antenna for microwave breast tumor detection," Progress In Electromagnetics Research, Vol. 86, 169-198, 2008.
doi:10.2528/PIER08090701 Google Scholar
23. Santorelli, A., et al. "Experimental demonstration of pulse shaping for time-domain microwave breast imaging," Progress In Electromagnetics Research, Vol. 133, 309-329, 2013. Google Scholar
24. Porter, E., J. Fakhoury, R. Oprisor, M. Coates, and M. Popovic, "Improved tissue phantoms for experimental validation of microwave breast cancer detection," Proceedings of the 4th European Conference on Antennas and Propagation (EUCAP), Apr. 2010. Google Scholar
25. Lazebnik, M., et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
26. Lazebnik, M., E. Madsen, G. Frank, and S. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Phys. Med. Biol., Vol. 50, 4245-4258, 2005.
doi:10.1088/0031-9155/50/18/001 Google Scholar
27. Porter, E., E. Kirshin, A. Santorelli, and M. Popovic, "Microwave breast screening in the time-domain: Identification and compensation of measurement-induced uncertainties," Progress In Electromagnetics Research B, Vol. 55, 115-130, 2013. Google Scholar
28. Conceicao, R. C., et al. "Evaluation of features and classifiers for classification of early-stage breast cancer," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 1-14, 2011.
doi:10.1163/156939311793898350 Google Scholar
29. Boser, B. E., I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers," Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 144-152, 1992.
doi:10.1145/130385.130401 Google Scholar
30. Cortes, C. and V. Vapnik, "Support-vector networks," Machine Learning, Vol. 20, No. 3, 273-297, 1995. Google Scholar
31. Martinez, A. and A. Kak, "PCA versus LDA," IEEE Trans. Pattern Anal. Mach. Intell, Vol. 23, No. 2, 228-233, Feb. 2001.
doi:10.1109/34.908974 Google Scholar
32. Hsu, C.-W., C.-C. Chang, and C.-J. Lin, "A practical guide to support vector classifiocation," Tech. Rep., 2003.
doi:http://www.csie.ntu.edu.tw/cjlin/papers.html Google Scholar