1. Carver, K. and J. Mink, "Microstrip antenna technology," IEEE Transactions on Antennas and Propagation, Vol. 29, No. 1, 2-24, Jan. 1981.
doi:10.1109/TAP.1981.1142523 Google Scholar
2. Vaughan, M. J., K. Y. Hur, and R. C. Compton, "Improvement of microstrip patch antenna radiation patterns," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 6, 1980-1983, 1994.
doi:10.1109/8.301717 Google Scholar
3. Colburn, J. S. and Y. Rahmat-Samii, "Patch antennas on externally perforated high dielectric constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 12, 1785-1794, 1999.
doi:10.1109/8.817654 Google Scholar
4. Jackson, D. R., J. T. Williams, A. K. Bhattacharyya, R. L. Smith, S. J. Buchheit, and S. A. Long, "Microstrip patch designs that do not excite surface waves," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 8, 1026-1037, 1993.
doi:10.1109/8.244643 Google Scholar
5. Bhattacharyya, A. K., "Characteristics of space and surface waves in a multilayered structure," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 8, 1231-1238, 1990.
doi:10.1109/8.56959 Google Scholar
6. Papapolymerou, I., R. F. Drayton, and L. P. B. Katehi, "Surface wave mode reduction for rectangular microstrip antennas," IEEE Antennas and Propagation Society International Symposium: 1995 Digest, Vol. 3, 1494-1497, 1995 .
doi:10.1109/APS.1995.530859 Google Scholar
7. Bayat, N., H. R. Hassani, and S. Mohammad, "Sidelobe level reduction in microstrip patch antenna array," Loughborough Antennas and Propagation Conference (LAPC) ,", Nov. 2011. Google Scholar
8. Whittow, W. G., C. C. Njoku, J. C. Vardaxoglou, and J. Joubert, "Designing multi-band and high bandwidth antennas with heterogeneous substrates," 2012 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 748-751, 2012.
doi:10.1109/APWC.2012.6324938 Google Scholar
9. Yeap, S. B. and Z. N. Chen, "Microstrip patch antennas with enhanced gain by partial substrate removal," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 2811-2816, Sep. 2010.
doi:10.1109/TAP.2010.2052572 Google Scholar
10. Yun , S., D. Kim, and S. Nam, "Bandwidth and efficiency enhancement of cavity-backed slot antenna using a substrate removal," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1458-1461, 2012. Google Scholar
11. Katehi, L. P. B., "Micromachined microstrip patch antenna with controlled mutual coupling and surface waves," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 9, 1282-1289, 2001.
doi:10.1109/8.947019 Google Scholar
12. Zheng, V. F. F. M., Q. Chen, and P. S. Hall, "Broadband microstrip patch antenna on micromachined silicon substrates," Electronics Letters, Vol. 34, No. 1, 8-9, 1998.
doi:10.1049/el:19980077 Google Scholar
13. Papapolymerou, I., R. F. Drayton, and L. P. B. Katehi, "Micromachined patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 2, 275-283, 1998. Google Scholar
14. Chen, Q., V. F. Fusco, M. Zheng, and P. S. Hall, "Micromachined silicon antennas," International Conference on Microwave and Millimeter Wave Technology Proceedings, 289-292, 1998. Google Scholar
15. Aditya, S., C. K. Sim, D. Wu, W. T. Chua, Z. X. Shen, and C. L. Law, "High-gain 24-GHz CPW-fed microstrip patch antennas on high-permittivity substrates," IEEE Antennas and Wireless Propagation Letters, Vol. 3, 30-33, 2004. Google Scholar
16. Ibrahim, A. and D. R. S. Cumming, "A micromachined 10 GHz meander dipole antenna on high resistivity silicon substrate for remote sensing applications," Loughborough Antennas and Propagation Conference (LAPC), 345-347, Nov. 2009. Google Scholar
17. Singh, V. K., "Ka-band micromachined microstrip patch antenna," IET Microwaves, Antennas & Propagation, Vol. 4, No. 3, 316-323, 2010. Google Scholar
18. Yan, J. B. and R. D. Murch, "Fabrication of a wideband antenna on a low-resistivity silicon substrate using a novel micromachining technique," Antennas and Wireless Propagation Letters, Vol. 6, No. 11, 476-479, 2007. Google Scholar
19. Pan, W., S. Wu, and Y. Chen, "Micromachined patch antennas on synthesized substrates," International Conference on Mirowave and Milimeter Wave Technology Proceedings, 58-61, 2004. Google Scholar
20. Gauthier, G. P., A. Courtay, and G. M. Rebeiz, "Microstrip antennas on synthesized low dielectric-constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 8, 1310-1314, 1997. Google Scholar
21. Navarro, E. A., A. Luximon, I. J. Craddock, D. L. Paul, and M. Dean, "Multilayer and conformal antennas using synthetic dielectric substrates," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 4, 905-908, Apr. 2003. Google Scholar
22. Navarro, E. A., I. J. Craddock, and D. L. Paul, "Synthetic dielectrics for planar antenna design," Electronics Letters, Vol. 36, No. 6, 491-493, 2000. Google Scholar
23. Muldavin, J. B. and G. M. Rebeiz, "Millimeter-wave tapered-slot antennas on synthesized low permittivity substrates," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 8, 1276-1280, 1999. Google Scholar
24. Rotman, R. Turner and R. Turner, "Wide-angle microwave lens for line source applications," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 6, 623-632, Nov. 1963. Google Scholar
25. Archer, D. H. and M. J. Maybell, "Rotman lens development history at raytheon electronic warfare systems 1967--1995," Antennas and Propagation Society International Symposium, 31-34, 1995. Google Scholar
26. Schulwitz, L. and A. Mortazawi, "A new low loss rotman lens design using a graded dielectric substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 12, 2734-2741, Dec. 2008. Google Scholar
27. Gong, X., T. Smyth, E. Ghaneie, and W. J. Chappell, "High-Q resonators and filters inside advanced low-temperature co-¯red ceramic substrates using fine-scale periodicity," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 4, 922-930, 2008. Google Scholar
28. Yang, R., Z. Lei, L. Chen, Z. Wang, and Y. Hao, "Surface wave transformation lens antennas," IEEE Transactions on Antennas and Propagation, No. 99, 1-6, 2013. Google Scholar
29. Psychoudakis, D., Y. H. Koh, J. L. Volakis, and J. H. Halloran, "Design method for aperture-coupled microstrip patch antennas on textured dielectric substrates," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 10, 2763-2765, Oct. 2004. Google Scholar
30. Psychoudakis, D., J. L. Volakis, Z. Wing, and J. W. Halloran, "Cavity-backed miniature wideband UHF circular polarized antenna with textured dielectrics," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 12, 3586-3592, Dec. 2006. Google Scholar
31. Njoku, C. C., W. G. Whittow, and J. C. Vardaxoglou, "Simulation methodology for synthesis of antenna substrates with microscale inclusions," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2194-2202, May 2012. Google Scholar
32. Njoku, C. C., W. G. Whittow, and J. C. Vardaxoglou, "Effective permittivity of heterogeneous substrates with cubes in a 3-D lattice," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1480-1483, 2011. Google Scholar
33. Whittow, W. G., "Microstrip patch antennas with 3-dimensional substrates," Loughborough Antennas and Propagation Conference (LAPC) , 2012. Google Scholar