1. Bilotti, F., L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microw. Opt. Techn. Let., Vol. 48, No. 11, 2171-2175, 2006.
doi:10.1002/mop.21891 Google Scholar
2. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
3. Zhu, B., Z.Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110 Google Scholar
4. Lu, L., S. B. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, "A polarization-independent wide-angle dual direction absorption metamaterial absorber," Progress In Electromagnetics Research M, Vol. 27, 191-201, 2012. Google Scholar
5. Huang, Y. J., H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10090504 Google Scholar
6. He, X. J., Y. Wang, J. M. Wang, T. L. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011. Google Scholar
7. Zhu, W. R. and X. P. Zhao, "Metamaterial absorber dendritic cells at infrared frequencies," J. Opt. Soc. Am. B, Vol. 26, 2382-2385, 2009.
doi:10.1364/JOSAB.26.002382 Google Scholar
8. Zhu, W. R., X. P. Zhao, B. Y. Gong, L. H. Liu, and B. Su, "Optical metamaterial absorber based on leaf-shaped cells," Appl. Phys. A Mater., Vol. 102, 147-151, 2011.
doi:10.1007/s00339-010-6057-6 Google Scholar
9. Wang, G. D., M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, "Multi-band microwave metamaterial absorber based on coplanar Jerusalem crosses," Chin. Phys. B, Vol. 23, No. 1, 017802, 2014.
doi:10.1088/1674-1056/23/1/017802 Google Scholar
10. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011. Google Scholar
11. Guo, X. R., Z. Zhang, J. H. Wang, and J. J. Zhang, "The design of a triple-band wide-angle metamaterial absorber based on regular pentagon close-ring," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 5, 629-637, 2013.
doi:10.1080/09205071.2013.758317 Google Scholar
12. Bian, B. R., S. B. Liu, H. F. Zhang, B. X. Li, and B. Ma, "A new triple-band polarization-insensitive wide-angle microwave metamaterial absorber," PIERS Proceedings, 435-438, Stockholm, Sweden, Aug. 12-15, 2013. Google Scholar
13. Shen, X. P., T. J. Cui, J. M. Zhao, H. F. Ma, W. X. Jiang, and H. Li, "Polarization-independent wide-angle triple-band metamaterial absorber," Opt. Express, Vol. 19, No. 10, 9401-9407, 2011.
doi:10.1364/OE.19.009401 Google Scholar
14. Bian, B. R., S. B. Liu, S. Y. Wang, X. K. Kong, H. F. Zhang, B. Ma, and H. Yang, "Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber," J. Appl. Phys., Vol. 114, No. 19, 194511, 2013.
doi:10.1063/1.4832785 Google Scholar
15. Wang, G. D., M. H. Liu, X. W. Hu, L. H. Kong, L. L. Cheng, and Z. Q. Chen, "Broadband and ultra-thin terahertz metamaterial absorber based on multi-circular patches," Eur. Phys. J. B, Vol. 86, No. 7, 304, 2013.
doi:10.1140/epjb/e2013-30879-7 Google Scholar
16. Ye, Y. Q., Y. Jin, and S. L. He, "Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime," J. Opt. Soc. Am. B, Vol. 27, 498-504, 2010.
doi:10.1364/JOSAB.27.000498 Google Scholar
17. Cheng, Y. Z., Y. Wang, Y. Nie, R. Z. Gong, X. Xiong, and X. Wang, "Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements," J. Appl. Phys., Vol. 111, No. 4, 044902, 2012.
doi:10.1063/1.3684553 Google Scholar
18. Wen, D. E., H. L. Yang, Q. W. Ye, M. H. Li, L. Y. Guo, and J. F. Zhang, "Broadband metamaterial absorber based on a multi-layer structure," Phys. Scr., Vol. 88, 015402, 2013.
doi:10.1088/0031-8949/88/01/015402 Google Scholar
19. Jiang, Z. H., S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating," ACS Nano, Vol. 5, 4641-4647, 2011.
doi:10.1021/nn2004603 Google Scholar
20. Hu, C. G., L. Y. Liu, Z. Y. Zhao, X. N. Chen, and X. G. Luo, "Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies," Opt. Express, Vol. 17, No. 19, 16745-16749, 2009.
doi:10.1364/OE.17.016745 Google Scholar
21. Chen, H. T., "Interference theory of metamaterial perfect absorbers," Opt. Express, Vol. 20, No. 7, 7165-7172, 2012.
doi:10.1364/OE.20.007165 Google Scholar
22. Wanghuang, T. L., W. J. Chen, Y. J. Huang, and G. J. Wen, "Analysis of metamaterial absorber in normal and oblique incidence by using interference theory," AIP Advances, Vol. 3, No. 10, 102118, 2013.
doi:10.1063/1.4826522 Google Scholar
23. Shen, X. P., Y. Yang, Y. Z. Zang, J. Q. Gu, W. L. Zhang, and T. J. Cui, "Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation," Appl. Phys. Lett., Vol. 101, No. 15, 154102, 2012.
doi:10.1063/1.4757879 Google Scholar
24. Huang, L., D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, "Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers," Appl. Phys. Lett., Vol. 101, No. 10, 101102, 2012.
doi:10.1063/1.4749823 Google Scholar
25. Padilla, W. J., M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B, Vol. 75, No. 4, 041102, 2007.
doi:10.1103/PhysRevB.75.041102 Google Scholar