Vol. 145
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-03-14
A Compact and Wideband Circularly Polarized Rectenna with High Efficiency at X-Band
By
Progress In Electromagnetics Research, Vol. 145, 163-173, 2014
Abstract
A new design for a compact and wideband circularly-polarized rectenna with high efficiency operating at X-band is proposed. A dual-slot coupled antenna excited by an H-shaped slot fed by a T-shaped microstrip is designed to yield wideband performance as a receiving array antenna. Rectifying circuit models for harmonic suppression circuit, impedance matching, DC-pass circuit, and DC return circuit at the input and output of the diode are built up and optimized to transfer the maximum power from the antenna to the load using an ADS circuit simulator. An RF-DC conversion efficiency of 71.9% is measured on the conditions of 300 load, and 50.1 mW RF input power at 9.5 GHz operating frequency. For the proposed wideband rectenna, the efficiency of more than 50% is measured over a 1 GHz frequency bandwidth. The measured gain, axial ratio, and return loss of the circularly polarized antenna with a 4-element array are 11.2 dBi, 1.1 dB, and -16.4 dB, respectively. The reflection coefficient of the array antenna is measured at less than -10 dB over a wide frequency range of about 2 GHz. Using this antenna as transmitting (TX) and receiving (RX) radiators, the free-space power transfer capability of the rectenna is tested in free space to turn on an LED at 25 cm distance.
Citation
Jinwoo Shin, Mihui Seo, Junho Choi, Joonho So, and Changyul Cheon, "A Compact and Wideband Circularly Polarized Rectenna with High Efficiency at X-Band," Progress In Electromagnetics Research, Vol. 145, 163-173, 2014.
doi:10.2528/PIER14012803
References

1. Brown, W. C., "The history of power transmission by radio waves," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 9, 1230-1242, 1984.
doi:10.1109/TMTT.1984.1132833

2. Strassner, B. and K. Chang, "Microwave power transmission: Historical milestones and system components," Proceedings of the IEEE, Vol. 101, No. 6, 1379-1396, 2013.
doi:10.1109/JPROC.2013.2246132

3. Shinohara, N., "Power without wires," IEEE Microwave Mag., S64-S73, Dec. 2011.
doi:10.1109/MMM.2011.942732

4. Koert, P. and J. T. Cha, "Millimeter wave technology for space power beaming," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 6, 1251-1258, 1992.
doi:10.1109/22.141358

5. Chiou, H.-K. and I.-S. Chen, "High-efficiency dual-band on-chip rectenna for 35- and 94-GHz wireless power transmission in 0.13-¹m CMOS technology," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 12, 3598-3606, 2010.

6. Kim, J., S.-Y. Yang, K. D. Song, S. Jones, J. R. Elliott, and I.-S. Chen, S. H. Choi, "Microwave power transmission using a flexible rectenna for microwave-powered aerial vehicles," Smart Mater. Struct., Vol. 15, 1243-1248, 2006.
doi:10.1088/0964-1726/15/5/012

7. Epp, L. W., A. R. Khan, H. K. Smith, and R. P. Smith, "A compact dual-polarized 8.51-GHz rectenna for high-voltage (50 V) actuator applications," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 1, 111-120, 2000.
doi:10.1109/22.817479

8. Monti, G., L. Tarricone, and M. Spartano, "X-band planar rectenna," IEEE Antennas Wireless Propagat. Lett., Vol. 10, 1116-1119, 2011.
doi:10.1109/LAWP.2011.2171029

9. Yang, X.-X., C. Jiang, A. Z. Elsherbeni, F. Yang, and Y.-Q. Wang, "A novel compact printed rectenna for data communication systems," IEEE Trans. Antennas Propagat., Vol. 61, No. 5, 2532-2539, 2013.
doi:10.1109/TAP.2013.2244550

10. Gao, Y.-Y., X.-X. Yang, C. Jiang, and J.-Y. Zhou, "A circularly polarized rectenna with low profile for wireless power transmission," Progress In Electromagnetics Research Letters, Vol. 13, 41-49, 2010.
doi:10.2528/PIERL09111805

11. Kim, P., G. Chaudhary, and Y. Jeong, "A dual-band RF energy harvesting using frequency limited dual-band impedance matching," Progress In Electromagnetics Research, Vol. 141, 443-461, 2013.
doi:10.2528/PIER13061704

12. Gao, S. and A. Sambell, "Low-cost dual-polarized printed array with broad bandwidth," IEEE Trans. Antennas Propagat., Vol. 52, No. 2, 3394-3397, 2004.
doi:10.1109/TAP.2004.836398

13. Ravipati, C. B. and L. Shafai, "A wide bandwidth circularly polarized microstrip antenna using a single feed," IEEE AP-S Int. Symp. Dig., Vol. 1, 244-247, 1999.

14. Kirov, G. S. and D. P. Mihaylova, "Circularly polarized aperture coupled microstrip antenna with resonant slots and a screen," Radioengineering, Vol. 19, No. 1, 111-116, 2010.

15. Surface Mount Microwave Schottky Mixer Diodes, HSMS-8101, 8202, 8207, 8209 Series Avago Technologies, , 2009.

16. Hansen, J. and K. Chang, "Diode modeling for rectenna design," Proc. of 2011 IEEE APSURSI Int. Symp., 1077-1080, 2011.