Vol. 146
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-05-01
Near-Field Properties of Plasmonic Nanostructures with High Aspect Ratio
By
Progress In Electromagnetics Research, Vol. 146, 77-88, 2014
Abstract
Using the Green's dyad technique based on cuboidal meshing, we compute the electromagnetic field scattered by metal nanorods with high aspect ratio. We investigate the effect of the meshing shape on the numerical simulations. We observe that discretizing the object with cells with aspect ratios similar to the object's aspect ratio improves the computations, without degrading the convergency. We also compare our numerical simulations to finite element method and discuss further possible improvements.
Citation
Yacoub Ould Agha, Olivier Demichel, Christian Girard, Alexandre Bouhelier, and Gerard Colas des Francs, "Near-Field Properties of Plasmonic Nanostructures with High Aspect Ratio," Progress In Electromagnetics Research, Vol. 146, 77-88, 2014.
doi:10.2528/PIER14012904
References

1. Agio, M., "Optical antennas as nanoscale resonators," Nanoscale, Vol. 4, 692-706, 2012.
doi:10.1039/c1nr11116g        Google Scholar

2. Derom, S., R. Vincent, A. Bouhelier, and G. Colas des Francs, "Resonance quality, radiative/ohmic losses and modal volume of Mie plasmons," EPL, Vol. 98, 47008, 2012.
doi:10.1209/0295-5075/98/47008        Google Scholar

3. Bharadwaj, P., B. Deutsch, and L. Novotny, "Optical antennas," Advances in Optics and Photonics, Vol. 1, 438-483, 2009.
doi:10.1364/AOP.1.000438        Google Scholar

4. Olmon, R. L. and M. B. Raschke, "Antenna-load interactions at optical frequencies: Impedance matching to quantum systems," Nanotechnology, Vol. 23, 444001, 2012.
doi:10.1088/0957-4484/23/44/444001        Google Scholar

5. Moskovits, M., "Surface-enhanced spectroscopy," Reviews of Modern Physics, Vol. 57, 783-826, 1985.
doi:10.1103/RevModPhys.57.783        Google Scholar

6. Pettinger, B., "Single-molecule surface- and tip-enhanced raman spectroscopy," Molecular Physics, Vol. 108, 2039-2059, 2010.
doi:10.1080/00268976.2010.506891        Google Scholar

7. Girard, C., "Near-field in nanostructures," Report on Progress in Physics, Vol. 68, 1883-1933, 2005.
doi:10.1088/0034-4885/68/8/R05        Google Scholar

8. Pastoriza-Santos, I. and L. M. Liz-Marzan, "Colloidal silver nanoplates. State of the art and future challenges," Journal of Materials Chemistry, Vol. 18, 1713-1720, 2008.
doi:10.1039/b716538b        Google Scholar

9. Thete, A., O. Rojas, D. Neumeyer, J. Koetz, and E. Dujardin, "Ionic liquid-assisted morphosynthesis of gold nanorods using polyethyleneimine-capped seeds," RSC Advances, Vol. 3, 14294-14298, 2005.
doi:10.1039/c3ra22112a        Google Scholar

10. Lakhtakia, A., "Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields," Journal of Modern Physics C, Vol. 3, 583-603, 1992.
doi:10.1142/S0129183192000385        Google Scholar

11. Paulus, M., P. Gay-Balmaz, and O. Martin, "Green's tensor technique for scattering in two-dimensional stratified media," Physical Review E, Vol. 63, 66615, 2001.
doi:10.1103/PhysRevE.63.066615        Google Scholar

12. Leveque, G., et al. "Polarization state of the optical near-field," Physical Review E, Vol. 65, 36701, 2002.
doi:10.1103/PhysRevE.65.036701        Google Scholar

13. Girard, C., J. C. Weeber, A. Dereux, O. J. F. Martin, and J. P. Goudonnet, "Optical magnetic near-field intensities around nanometer-scale surface structures," Physical Review B, Vol. 55, 16487-16497, 1997.
doi:10.1103/PhysRevB.55.16487        Google Scholar

14. Novotny, L., "Allowed and forbidden light in near-field optics. I. A single dipolar light source," Journal of the Optical Society of America, Vol. 14, 91-104, 1997.
doi:10.1364/JOSAA.14.000091        Google Scholar

15. Colas des Francs, G., C. Girard, J.-C. Weeber, and A. Dereux, "Relationship between scanning near-fifild optical images and local density of photonic states," Chemical Physics Letters, Vol. 345, 512-516, 2001.
doi:10.1016/S0009-2614(01)00914-9        Google Scholar

16. Girard, C., O. Martin, G. Leveque, G. Colas des Francs, and A. Dereux, "Generalized bloch equations for optical interactions in confined geometries," Chemical Physics Letters, Vol. 404, No. 44, 2005.        Google Scholar

17. Kottmann, J. P. and O. J. F. Martin, "Accurate solution of the volume integral equation for high-permittivity scatterers," IEEE Transactions on Antennas and Propagation, Vol. 48, 1719-1726, 2000.
doi:10.1109/8.900229        Google Scholar

18. Chaumet, P. C., A. Sentenac, and A. Rahmani, "Coupled dipole method for scatterers with large permittivity," Physical Review E, Vol. 70, 36606, 2004.
doi:10.1103/PhysRevE.70.036606        Google Scholar

19. Gao, G., C. Torres-Verdin, and T. Habashy, "Analytical techniques to evaluate the integrals of 3D and 2D spatial dyadic Green's functions," Progress In Electromagnetics Research, Vol. 52, 47-80, 2005.
doi:10.2528/PIER04070201        Google Scholar

20. Myroshnychenko, V., et al. "Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method," Advanced Materials, Vol. 20, 4288-4293, 2008.
doi:10.1002/adma.200703214        Google Scholar

21. Hohenester, U. and A. Trugler, "Interaction of single molecules with metallic nanoparticles," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, 1430, 2008.
doi:10.1109/JSTQE.2008.2007918        Google Scholar

22. Kern, A. and O. Martin, "Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures," Journal of the Optical Society of America A, Vol. 26, 732-740, 2009.
doi:10.1364/JOSAA.26.000732        Google Scholar

23., www.comsol.com.        Google Scholar

24. Colas des Francs, G., et al. "Optical analogy to electronic quantum corrals," Physical Review Letters, Vol. 86, 4950-4953, 2001.
doi:10.1103/PhysRevLett.86.4950        Google Scholar

25. Colas des Francs, G., C. Girard, and A. Dereux, "Theory of near-field optical imaging with a single molecule as a light source," Journal of Chemical Physics, Vol. 117, 4659-4666, 2002.
doi:10.1063/1.1492795        Google Scholar

26. Yaghjian, A., "Electric dyadic Green's functions in the source region," Proceedings of the IEEE, Vol. 68, 248-263, 1980.
doi:10.1109/PROC.1980.11620        Google Scholar

27. Massa, E., T. Roschuk, S. Maier, and V. Giannini, "Discrete-dipole approximation on a rectangular cuboidal point lattice: Considering dynamic depolarization," Journal of the Optical Society of America A, Vol. 1, 135-140, 2014.
doi:10.1364/JOSAA.31.000135        Google Scholar

28. Jin, J.-M., The Finite Element Method in Electromagnetics, Wiley IEEE Press, New York, 2002.

29. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic-waves," Journl of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159        Google Scholar

30. Ould Agha, Y., F. Zolla, A. Nicolet, and S. Guenneau, "On the use of PML for the computation of leaky modes: An application to microstructured optical fibres," COMPEL (The International Journal for Computation and Mathematics in Electrical and Electronic Engineering), Vol. 27, No. 1, 95-109, 2008.
doi:10.1108/03321640810836672        Google Scholar

31. Nicolet, A., F. Zolla, Y. Ould Agha, and S. Guenneau, "Geometrical transformations and equivalent materials in computational electromagnetism," COMPEL (The International Journal for Computation and Mathematics in Electrical and Electronic Engineering), Vol. 27, No. 4, 806-819, 2008.
doi:10.1108/03321640810878216        Google Scholar

32. Johnson, P. and R. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, 4370-439, 1972.        Google Scholar

33. Stout, B., J. C. Auger, and A. Devilez, "Recursive T matrix algorithm for resonant multiple scattering: Applications to localized plasmon excitations," Journal of the Optical Society of America A, Vol. 25, 2549-2557, 2008.        Google Scholar

34. Ditlbacher, H., et al. "Silver nanowires as surface plasmon resonators," Physical Review Letters, Vol. 95, 257403, 2005.
doi:10.1103/PhysRevLett.95.257403        Google Scholar

35. Novotny, L., "Effective wavelength scaling for optical antennas," Physical Review Letters, Vol. 98, 266802, 2007.
doi:10.1103/PhysRevLett.98.266802        Google Scholar

36. Cubukcu, E. and F. Capasso, "Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons," Applied Physics Letters,, Vol. 95, 201101, 2009.
doi:10.1063/1.3262947        Google Scholar

37. Lal, S., N. K. Grady, G. P. Goodrich, and N. J. Halas, "Profiling the near field of a plasmonic nanoparticle with raman-based molecular rulers," Nano Letters, Vol. 6, 2338-2343, 2006.
doi:10.1021/nl061892p        Google Scholar

38. Deeb, C., et al. "Quantitative analysis of localized surface plasmons based on molecular probing," ACS Nano, Vol. 4, 4579-4586, 2010.
doi:10.1021/nn101017b        Google Scholar

39. Garcia de Abajo, F. and M. Kociak, "Probing the photonic local density of states with electron energy loss spectroscopy," Physical Review Letters, Vol. 100, 106804, 2008.
doi:10.1103/PhysRevLett.100.106804        Google Scholar

40. Bouhelier, A., G. Colas des Francs, and J. Grandidier, "Plasmonics, from basics to advanced topics," Springer Series in Optical Sciences, Vol. 167, Chap. Surface Plasmon Imaging, 225-268, Springer, 2012.        Google Scholar

41. Barnes, W., "Fluorescence near interfaces: The role of photonic mode density," Journal of Modern Optics, Vol. 45, 661-699, 1998.
doi:10.1080/09500349808230614        Google Scholar

42. Viarbitskaya, S., et al. "Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms ," Nature Materials, Vol. 12, 426-432, 2013.
doi:10.1038/nmat3581        Google Scholar

43. Lim, J., et al. "Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy," Chemical Physics Letters, Vol. 1412, 41-45, 2005.
doi:10.1016/j.cplett.2005.06.094        Google Scholar

44. Weeber, J.-C., C. Girard, A. Dereux, J. Krenn, and J. P. Goudonnet, "Near-field optical properties of localized plasmons around lithographically designed nanostructures," Journal of Applied Physics, Vol. 86, 2576-2583, 1999.
doi:10.1063/1.371095        Google Scholar

45. Gay-Balmaz, P. and O. Martin, "Validity of non-retarded Green's tensor for electromagnetic scattering at surfaces," Optics Communications, Vol. 184, 37-47, 2000.
doi:10.1016/S0030-4018(00)00932-9        Google Scholar

46. Alegret, J., M. Kall, and P. Johansson, "Top-down extended meshing algorithm and its applications to Green's tensor nano-optics calculations," Physical Review E, Vol. 75, 046702, 2007.
doi:10.1103/PhysRevE.75.046702        Google Scholar