1. Carver, K. R. and J. W. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 2-24, Jan. 1981. Google Scholar
2. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, Stevenage, Peregrinus, UK, 1989.
3. Michalski, K. A. and D. Zheng, "Analysis of microstrip resonators of arbitrary shape," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 1, 112-119, Jan. 1992. Google Scholar
4. Gupta, K. C. and M. D. Abouzahra (eds.), Analysis and Design of Planar Microwave Components, IEEE Press, Piscataway, NJ, 1994.
5. Bogosanovich, M., "Microstrip patch sensor for measurement of the permittivity of homogeneous dielectric materials," IEEE Trans. Instrum. Meas., Vol. 49, No. 5, 1144-1148, Oct. 2000. Google Scholar
6. Zucchelli, A., M. Chimenti, and E. Bozzi, "Application of a coaxial-fed patch to microwave nondestructive porosity measurements in low-loss dielectrics," Progress In Electromagnetics Research M, Vol. 5, 1-14, 2008. Google Scholar
7. Bahl, J., P. Bahartia, and S. S. Stuchly, "Design of microstrip antennas covered with a dielectric layer," IEEE Trans. Antennas Propag., Vol. 30, No. 2, 314-318, Mar. 1982. Google Scholar
8. Bhattacharayya, A. and T. Tralman, "Effects of dielectric superstrate on patch antennas," Electron. Lett., Vol. 24, No. 6, 356-358, 1988. Google Scholar
9. Harokopus, W. P. and P. B. Katehi, "Characterization of microstrip discontinuities on multilayer dielectric substrates including radiation losses," IEEE Trans. Microw. Theory Tech., Vol. 37, No. 12, 2058-2066, Dec. 1989. Google Scholar
10. Schwab, W. and W. Menzel, "On the design of planar microwave components using multilayer structures," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 1, 67-72, Jan. 11992. Google Scholar
11. Afzalzadeh, R. and R. N. Karekar, "X-band directive single microstrip patch antenna using dielectric parasite," Electron. Lett., Vol. 28, No. 1, 17-19, 1992. Google Scholar
12. Yeung, E. K. L., J. C. Beal, and Y. M. M. Antar, "Multilayer microstrip structure analysis with matched load simulation," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 1, 143-149, Jan. 1995. Google Scholar
13. Tsai, M.-J., F. De Flaviis, O. Fordham, and N. G. Alexopoulos, "Modeling planar arbitrarily shaped microstrip elements in multilayered media," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 3, 330-337, Mar. 1997. Google Scholar
14. Losada, V., R. R. Boix, and M. Horno, "Resonant modes of circular microstrip patches in multilayered substrates," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 4, 488-498, Apr. 1999. Google Scholar
15. Ling, F., D. Jiao, and J.-M. Jin, "Efficient electromagnetic modeling of microstrip structures in multilayer media," EEE Trans. Microw. Theory Tech., Vol. 47, No. 9, 1810-1818, Sep. 1999. Google Scholar
16. Xia, L., C.-F. Wang, L.-W. Li, P.-S. Kooi, and M.-S. Leong, "Fast characterization of microstrip antenna resonance in multilayered media using interpolation/extrapolation methods," Microw. Opt. Technol. Lett., Vol. 28, No. 5, 342-346, Mar. 2001. Google Scholar
17. Sharma, A. and G. Singh, "Design of single pin shorted three-dielectric-layered substrates rectangular patch microstrip antenna for communication systems," Progress In Electromagnetics Research Letters, Vol. 2, 157-165, 2008. Google Scholar
18. Li, Y. and N. Bowler, "Resonant frequency of a rectangular patch sensor covered with multilayered dielectric structures," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1883-1889, Jun. 2010. Google Scholar
19. Aouabdia, N., N. E. Belhadj-Tahar, G. Alquie, and F. Benabdelaziz, "Theoretical and experimental evaluation of superstrate e®ect on rectangular patch resonator parameters," Progress In Electromagnetics Research B, Vol. 32, 129-147, 2011. Google Scholar
20. Taflove, A., Computional Electromagentics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 1995.
21. Jin, J. M., The Finite Element Method in Electromagnetics, Wiley, New York, 1993.
22. Harrington, R. F., Field Computation in Electromagnetics, Wiley, New York, 1993.
23. Silvester, P. and P. Benedek, "Equivalent capacitance of microstrip open circuits," IEEE Trans. Microw. Theory Tech., Vol. 20, No. 8, 511-516, Aug. 1972. Google Scholar
24. Kompa, G. and R. Mehran, "Planar waveguide model for calculating microstrip components," Electron. Lett., Vol. 11, No. 19, 459-460, 1975. Google Scholar
25. Eswaran, K., "On the solutions of a class of dual integral equations occurring in diffraction problems," Proceedings of the Royal Society of London, Series A, Vol. 429, No. 1877, 399-427, 1990. Google Scholar
26. Bagby, J. S., C.-H. Lee, Y. Yuan, and D. P. Nyquist, "Entire-domain basis MOM analysis of coupled microstrip transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 1, 49-57, Jan. 1992. Google Scholar
27. Veliev, E. I. and V. V. Veremey, "Numerical-analytical approach for the solution to the wave scattering by polygonal cylinders and flat strip structures," Analytical and Numerical Methods in Electromagnetic Wave Theory, M. Hashimoto, M. Idemen, and O. A. Tretyakov (eds.), Science House, Tokyo, 1993. Google Scholar
28. Park, S. and C. A. Balanis, "Dispersion characteristics of open microstrip lines using closed-form asymptotic extraction," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 3, 458-460, Mar. 1997. Google Scholar
29. Park, S. and C. A. Balanis, "Closed-form asymptotic extraction method for coupled microstrip lines," IEEE Microw. Guid. Wave Lett., Vol. 7, No. 3, 84-86, Mar. 1997. Google Scholar
30. Amari, S., R. Vahldieck, and J. Bornemann, "Using selective asymptotics to accelerate dispersion analysis of microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 7, 1024-1027, Jul. 1998. Google Scholar
31. Tsalamengas, J. L., "Rapidly converging direct singular integral-equation techniques in the analysis of open microstrip lines on layered substrates," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 3, 555-559, Mar. 2001. Google Scholar
32. Lucido, M., G. Panariello, and F. Schettino, "Analysis of the electromagnetic scattering by perfectly conducting convex polygonal cylinders," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1223-1231, Apr. 2006. Google Scholar
33. Lucido, M., G. Panariello, and F. Schettino, "Electromagnetic scattering by multiple perfectly conducting arbitrary polygonal cylinders," IEEE Trans. Antennas Propag., Vol. 56, No. 2, 425-436, Feb. 2008. Google Scholar
34. Lucido, M., G. Panariello, and F. Schettino, "TE scattering by arbitrarily connected conducting strips," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 2212-2216, Jul. 2009. Google Scholar
35. Lucido, M., G. Panariello, and F. Schettino, "Scattering by polygonal cross-section dielectric cylinders at oblique incidence," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 540-551, Feb. 2010. Google Scholar
36. Coluccini, G., M. Lucido, and G. Panariello, "TM scattering by perfectly conducting polygonal cross-section cylinders: A new surface current density expansion retaining up to the second-order edge behavior," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 407-412, Jan. 2012. Google Scholar
37. Lucido, M., "An analytical technique to fast evaluate mutual coupling integrals in spectral domain analysis of multilayered coplanar coupled striplines," Microw. Opt. Technol. Lett., Vol. 54, No. 4, 1035-1039, Apr. 2012. Google Scholar
38. Coluccini, G., M. Lucido, and G. Panariello, "Spectral domain analysis of open single and coupled microstrip lines with polygonal cross-section in bound and leaky regimes," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 2, 736-745, Feb. 2013. Google Scholar
39. Lucido, M., "An efficient evaluation of the self-contribution integrals in the spectral-domain analysis of multilayered striplines," EEE Antennas Wireless Propag. Lett., Vol. 12, 360-363, Mar. 2013. Google Scholar
40. Meixner, J., "The behaviour of electromagnetic fields at edges," IEEE Trans. Antennas Propag., Vol. 20, No. 4, 442-446, Jul. 1972. Google Scholar
41. Hongo, K. and H. Serizawa, "Diffraction of electromagnetic plane wave by rectangular plate and rectangular hole in the conducting plate," IEEE Trans. Antennas Propag., Vol. 47, No. 6, 1029-1041, Jun. 1999. Google Scholar
42. Coluccini, G. and M. Lucido, "A new high efficient analysis of the scattering by a perfectly conducting rectangular plate," IEEE Trans. Antennas Propag., Vol. 61, No. 5, 2615-2622, May 2013. Google Scholar
43. Chew, W. C. and Q. Liu, "Resonance frequency of a rectangular microstrip patch," IEEE Trans. Antennas Propag., Vol. 36, No. 8, 1045-1056, Aug. 1988. Google Scholar
44. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.
45. Chew, W. C. and S. Y. Chen, "Response of a point source embedded in a layered medium," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 254-258, 2003. Google Scholar
46. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Verlag Harri Deutsch, 1984.