Vol. 146
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-05-09
A 3-Dimensional Stacked Metamaterial Arrays for Electromagnetic Energy Harvesting
By
Progress In Electromagnetics Research, Vol. 146, 109-115, 2014
Abstract
We present the design of 3-D metamaterial stacked arrays for efficient conversion of electromagnetic waves energy into AC. The design consists of several vertically stacked arrays where each array is comprised of multiple Split-Ring Resonators. The achieved conversion efficiency is validated by calculating the power dissipated in a resistive load connected across the gap of each resonator. Numerical simulations show that using stacked arrays can significantly improve the efficiency of the harvesting system in comparison to a flat 2-D array. In fact, the per-unit-area efficiency of the 3-D design can reach up to 4.8 times the case of the 2-D array. Without loss of generalization, the designs presented in this work considered an operating frequency of 5.8 GHz.
Citation
Thamer Almoneef Omar M. Ramahi , "A 3-Dimensional Stacked Metamaterial Arrays for Electromagnetic Energy Harvesting," Progress In Electromagnetics Research, Vol. 146, 109-115, 2014.
doi:10.2528/PIER14031603
http://www.jpier.org/PIER/pier.php?paper=14031603
References

1. Pendry, J., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Enoch, S., et al., "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902

3. Schurig, D., J. Mock, B. Justice, S. Cummer, J. Pendry, A. Starr, and D. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

4. Landy, N., S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

5. Tao, H., C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Physical Review B Condensed Matter and Materials Physics, Vol. 78, No. 24, 241103R, 2008.
doi:10.1103/PhysRevB.78.241103

6. Ramahi, O., T. Almoneef, M. Alshareef, and M. Boybay, "Metamaterial particles for electromagnetic energy harvesting," Applied Physics Letters, Vol. 101, No. 17, 173903, 2012.
doi:10.1063/1.4764054

7. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

8. Ramahi, O. M. and T. S. Almoneef, "A three-dimensional stacked metamaterial arrays for electromagnetic energy harvesting,", US Provisional Patent Application No. 61939191.

9. Suh, Y. and K. Chang, "A high-e±ciency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 7, 1784-1789, 2002.
doi:10.1109/TMTT.2002.800430

10. Ren, Y.-J. and K. Chang, "5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 4, 1784-1789, 2006.

11. Hawkes, A. M., A. R. Katko, and S. A. Cummer, "A microwave metamaterial with integrated power harvesting functionality," Applied Physics Letters, Vol. 103, No. 16, 163901, 2013.
doi:10.1063/1.4824473

12. AlShareef, M. and O. M. Ramahi, "Electrically small resonators for energy harvesting in the infrared regime," Journal of Applied Physics, Vol. 144, 223101-223105, 2013.
doi:10.1063/1.4846076

13. Bernardi, M., N. Ferralis, J. H. Wan, R. Villalon, and J. C. Grossman, "Solar energy generation in three dimensions," Energy & Environmental Science, Vol. 5, No. 5, 6880-6884, 2012.
doi:10.1039/c2ee21170j

14. ANSYS HFSS Version 15.0.0, Ansys Inc., , http://www.ansys.com.

15. Cheng, Y. Z., Y. Wang, Y. Nie, R. Z. Gong, X. Xiong, and X. Wang, "Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements," Journal of Applied Physics, Vol. 111, No. 4, 044902, 2012.
doi:10.1063/1.3684553

16. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for di®erent split-ring resonator parameters and designs," New Journal of Physics, Vol. 7, 168, 2005.
doi:10.1088/1367-2630/7/1/168

17. Erb, R., "Power from space --- The tough questions: The 1995 Peter E. Glaser lecture," Acta Astronautica, Vol. 38, No. 4, 539-550, 1996.
doi:10.1016/0094-5765(96)82324-1

18. Nansen, R. H., "Wireless power transmission: The key to solar power satellites," IEEE Aerospace and Electronic Systems Magazine, Vol. 11, No. 1, 33-39, 1996.
doi:10.1109/62.484148