Vol. 146
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-04-16
Multi-Physical Properties of Plasmonic Organic Solar Cells (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 146, 25-46, 2014
Abstract
Organic solar cells (OSCs) have recently attracted considerable research interest. For typical OSCs, it is highly desirable to have optically thick and physically thin thickness for strong light absorption and efficient carrier collection respectively. In the meantime, most organic semiconductors have short exciton diffusion length and low carrier mobility [1-3]. As a consequence, the active layers of OSCs are generally thin with a thickness of few hundred nanometers to ensure the efficient extraction of carriers, hence limiting the total absorption of incident light. Optimizing both the optical and electrical (i.e. multi-physical) properties of OSCs is in demands for rationally designed device architectures. Plasmonic nanomaterials (e.g. metallic nanoparticles [4-6], nanorods [7, 8], nanoprisms [9, 10], etc.) have recently been introduced into different layers of multilayered solar cells to achieve highly efficient light harvesting. The multilayered solar cells structures commonly have active layer, carrier (electron and hole) transport layer and electrode (anode and cathode). Through the localized plasmonic resonances (LPRs) [11-16] from metallic nanomaterials, very strong near-fields will be generated, which can provide a large potential for enhancing optical absorption in the multilayered OSCs. Besides the optical effects, it has been reported that metallic nanomaterials can modify the morphology, interface properties as well as the electrical properties of OSCs which will significantly modify the performances of OSCs [17-23]. In this article, the effects of various optical resonance mechanisms and the theoretical studies of the multi-physical properties of OSCs will be reviewed. Meanwhile, the experimental optical and electrical effects of metallic nanomaterials incorporated in different layers of OSCs will be studied. The morphology and interface effects of metallic nanomaterials in the carrier transport layers on the performances of OSCs will also be described.
Citation
Wallace C. H. Choy, Wei E. I. Sha, Xuanhua Li, and Di Zhang, "Multi-Physical Properties of Plasmonic Organic Solar Cells (Invited Paper)," Progress In Electromagnetics Research, Vol. 146, 25-46, 2014.
doi:10.2528/PIER14031810
References

1. Shaw, P. E., A. Ruseckas, and I. D. W. Samuel, "Exciton diffusion measurements in poly(3-hexylthiophene)," Advanced Materials, Vol. 20, No. 18, 3516-3520, 2008.        Google Scholar

2. Mcculloch, I., M. Heeney, C. Bailey, K. Genevicius, M. I. M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. M. Zhang, M. L. Chabinyc, R. J. Kline, M. D. Mcgehee, and M. F. Toney, "Liquid-crystalline semiconducting polymers with high charge-carrier mobility,", Vol. 5, No. 4, 328-333, 2006.        Google Scholar

3. Zaumseil, J. and H. Sirringhaus, "Electron and ambipolar transport in organic field-effect transistors," Chemical Reviews, Vol. 107, No. 4, 1296-1323, 2007.        Google Scholar

4. Fung, D. D. S., L. Qiao, W. C. H. Choy, C.Wang, E.Wei, F. Xie, and S. He, "Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer," Journal of Materials Chemistry, Vol. 21, No. 41, 16349-16356, 2011.        Google Scholar

5. Xie, F. X., W. C. H. Choy, C. C. D. Wang, E. Wei, and D. D. S. Fung, "Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers," Applied Physics Letters, Vol. 99, No. 153304, 2011.        Google Scholar

6. Yang, J., J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, "Plasmonic polymer tandem solar cell," ACS Nano, Vol. 5, No. 8, 6210-6217, 2011.        Google Scholar

7. Lu, L. Y., Z. Q. Luo, T. Xu, and L. P. Yu, "Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells," Nano Letters, Vol. 13, No. 1, 59-64, 2013.        Google Scholar

8. Jankovic, V., Y. Yang, J. B. You, L. T. Dou, Y. S. Liu, P. Cheung, J. P. Chang, and Y. Yang, "Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics," ACS Nano, Vol. 7, No. 5, 3815-3822, 2013.        Google Scholar

9. Li, X. H., W. C. H. Choy, H. F. Lu, W. E. I. Sha, and A. H. P. Ho, "Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles," Advanced Functional Materials, Vol. 23, No. 21, 2728-2735, 2013.        Google Scholar

10. Kulkarni, A. P., K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, "Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms," Nano Letters, Vol. 10, No. 4, 1501-1505, 2010.        Google Scholar

11. Gramotnev, D. K. and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nature Photonics, Vol. 4, No. 2, 83-91, 2010.        Google Scholar

12. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.        Google Scholar

13. Shalaev, V. M. and S. Kawata, Nanophotonics with Surface Plasmons, Elsevier, 2007.

14. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.

15. Giannini, V., A. I. Fernandez-Dominguez, Y. Sonnefraud, T. Roschuk, R. Fernandez-Garcia, and S. A. Maier, "Controlling light localization and light-matter interactions with nanoplasmonics," Small, Vol. 6, No. 22, 2498-2507, 2010.        Google Scholar

16. Raether, H., "Surface Plasmons on Smooth and Rough Surfaces and on Gratings," Springer-Verlag, Berlin, 1988.        Google Scholar

17. Kim, S.-S., S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Applied Physics Letters, Vol. 93, No. 7, 073303-073307, 2008.        Google Scholar

18. Berredjem, Y., J. C. Bernµede, S. Ouro Djobo, L. Cattin, M. Morsli, and A. Boulmokh, "On the improvement of the e±ciency of organic photovoltaic cells by the presence of an ultra-thin metal layer at the interface organic/ITO," The European Physical Journal --- Applied Physics, Vol. 44, No. 3, 223-228, 2008.        Google Scholar

19. Kouskoussa, B., M. Morsli, K. Benchouk, G. Louarn, L. Cattin, A. Khelil, and J. C. Bernµede, "On the improvement of the anode/organic material interface in organic solar cells by the presence of an ultra-thin gold layer," Physica Status Solidi (A), Vol. 206, No. 2, 311-315, 2009.        Google Scholar

20. Wang, C.-D. and W. C. H. Choy, "Efficient hole collection by introducing ultra-thin UV-ozone treated Au in polymer solar cells," Solar Energy Materials and Solar Cells, Vol. 95, No. 3, 904-908, 2011.        Google Scholar

21. Zhang, D., W. C. H. Choy, C. C. D. Wang, X. Li, L. Fan, K. Wang, and H. Zhu, "Polymer solar cells with gold nanoclusters decorated multi-layer graphene as transparent electrode," Applied Physics Letters, Vol. 99, No. 2, 223302, 2011.        Google Scholar

22. Zhang, D., F. Xie, P. Lin, and W. C. H. Choy, "Al-TiO2 composite-modified single-layer graphene as an efficient transparent cathode for organic solar cells," ACS Nano, Vol. 7, No. 2, 1740-1747, 2013.        Google Scholar

23. Zhang, D., W. C. H. Choy, F. Xie, W. E. I. Sha, X. Li, B. Ding, K. Zhang, F. Huang, and Y. Cao, "Plasmonic electrically functionalized TiO2 for high-performance organic solar cells," Advanced Functional Materials, Vol. 23, No. 34, 4255-4261, 2013.        Google Scholar

24. Chopra, K. L., P. D. Paulson, and V. Dutta, "Thin-film solar cells: An overview," Progress in Photovoltaics, Vol. 12, No. 2-3, 69-92, 2004.        Google Scholar

25. Hoppe, H. and N. S. Sariciftci, "Organic solar cells: An overview," Journal of Materials Research, Vol. 19, No. 7, 1924-1945, 2004.        Google Scholar

26. Brabec, C. J., S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, and S. P. Williams, "Polymer-fullerene bulk-heterojunction solar cells," Advanced Materials, Vol. 22, No. 34, 3839-3856, 2010.        Google Scholar

27. Deibel, C. and V. Dyakonov, "Polymer-fullerene bulk heterojunction solar cells," Reports on Progress in Physics, Vol. 73, No. 9, 096401, 2010.        Google Scholar

28. Ferry, V. E., L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic nanostructure design for efficient light coupling into solar cells," Nano Letters, Vol. 8, No. 12, 4391-4397, 2008.        Google Scholar

29. Sha, W. E. I., W. C. H. Choy, and W. C. Chew, "A comprehensive study for the plasmonic thin-film solar cell with periodic structure," Optics Express, Vol. 18, No. 6, 5993-6007, 2010.        Google Scholar

30. Tikhodeev, S. G., A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Physical Review B, Vol. 66, No. 4, 045102, 2002.        Google Scholar

31. Luk'yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Materials, Vol. 9, No. 9, 707-715, 2010.        Google Scholar

32. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Reviews of Modern Physics, Vol. 82, No. 3, 2257-2298, 2010.        Google Scholar

33. Martins, E. R., J. T. Li, Y. K. Liu, J. Y. Zhou, and T. F. Krauss, "Engineering gratings for light trapping in photovoltaics: The supercell concept," Physical Review B, Vol. 86, No. 4, 041404, 2012.        Google Scholar

34. Chen, L. Z., W. C. H. Choy, and W. E. I. Sha, "Broadband absorption enhancement of organic solar cells with interstitial lattice patterned metal nanoparticles," Applied Physics Letters, Vol. 102, No. 25, 251112-251112-4, 2013.        Google Scholar

35. Abass, A., K. Q. Le, A. Alu, M. Burgelman, and B. Maes, "Dual-interface gratings for broadband absorption enhancement in thin-film solar cells," Physical Review B, Vol. 85, No. 11, 115449, 2012.        Google Scholar

36. Catchpole, K. R. and A. Polman, "Design principles for particle plasmon enhanced solar cells," Applied Physics Letters, Vol. 93, No. 19, 191113, 2008.        Google Scholar

37. Mokkapati, S., F. J. Beck, A. Polman, and K. R. Catchpole, "Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells," Applied Physics Letters, Vol. 95, No. 5, 053115, 2009.        Google Scholar

38. Pala, R. A., J. White, E. Barnard, J. Liu, and M. L. Brongersma, "Design of plasmonic thin-film solar cells with broadband absorption enhancements," Advanced Materials, Vol. 21, No. 34, 3504-3509, 2009.        Google Scholar

39. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Materials, Vol. 9, No. 3, 205-213, 2010.        Google Scholar

40. Kang, M. G., T. Xu, H. J. Park, X. G. Luo, and L. J. Guo, "Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes," Advanced Materials, Vol. 22, No. 39, 4378-4383, 2010.        Google Scholar

41. Lee, J. Y. and P. Peumans, "The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer," Optics Express, Vol. 18, No. 10, 10078-10087, 2010.        Google Scholar

42. Diukman, I., L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, "Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer," Optics Express, Vol. 19, No. 1, A64-A71, 2011.        Google Scholar

43. Sha, W. E. I., W. C. H. Choy, Y. G. Liu, and W. C. Chew, "Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells," Applied Physics Letters, Vol. 99, No. 11, 113304, 2011.        Google Scholar

44. Wang, C. C. D., W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, "Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells," Journal of Materials Chemistry, Vol. 22, No. 3, 1206-1211, 2012.        Google Scholar

45. Bai, W. L., Q. Q. Gan, G. F. Song, L. H. Chen, Z. Kafafi, and F. Bartoli, "Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics," Optics Express, Vol. 18, No. 23, A620-A630, 2010.        Google Scholar

46. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, No. 5644, 419-422, 2003.        Google Scholar

47. Nordlander, P., C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Letters, Vol. 4, No. 5, 899-903, 2004.        Google Scholar

48. Sha, W. E. I., W. C. H. Choy, Y. P. P. Chen, and W. C. Chew, "Optical design of organic solar cell with hybrid plasmonic system," Optics Express, Vol. 19, No. 17, 15908-15918, 2011.        Google Scholar

49. Li, X., W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, "Dual plasmonic nanostructures for high performance inverted organic solar cells," Advanced Materials, Vol. 24, No. 22, 3046-3052, 2012.        Google Scholar

50. Bai, W. L., Q. Q. Gan, F. Bartoli, J. Zhang, L. K. Cai, Y. D. Huang, and G. F. Song, "Design of plasmonic back structures for e±ciency enhancement of thin-film amorphous Si solar cells," Optics Letters, Vol. 34, No. 23, 3725-3727, 2009.        Google Scholar

51. Min, C. J., J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, "Enhancement of optical absorption in thin-¯lm organic solar cells through the excitation of plasmonic modes in metallic gratings," Applied Physics Letters, Vol. 96, No. 13, 133302, 2010.        Google Scholar

52. Sha, W. E. I., W. C. H. Choy, and W. C. Chew, "Angular response of thin-film organic solar cells with periodic metal back nanostrips," Optics Letters, Vol. 36, No. 4, 478-480, 2011.        Google Scholar

53. Khurgin, J. B., G. Sun, and R. A. Soref, "Practical limits of absorption enhancement near metal nanoparticles," Applied Physics Letters, Vol. 94, No. 7, 071103, 2009.        Google Scholar

54. Akimov, Y. A., W. S. Koh, and K. Ostrikov, "Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes," Optics Express, Vol. 17, No. 2, 10195-10205, 2009.        Google Scholar

55. Chew, W. C. and J. M. Jin, Fast and E±cient Algorithms in Computational Electromagnetics, Artech House, Boston, 2001.

56. Luebbers, R., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, No. 3, 222-227, 1990.        Google Scholar

57. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 6, 792-797, 1996.        Google Scholar

58. Sullivan, D. M., Electromagnetic Simulation Using the FDTD Method, Wiley-IEEE Press, New York, 2000.

59. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Boston, 2005.

60. Veronis, G. and S. H. Fan, "Overview of simulation techniques for plasmonic devices," Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, Eds., Springer, Dordrecht, Netherlands, 2007.        Google Scholar

61. Veysoglu, M. E., R. T. Shin, and J. A. Kong, "A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique-incidence case," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 12, 1595-1607, 1993.        Google Scholar

62. Chew, W. C., M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool Publishers, 2009.

63. Jin, J. M., The Finite Element Method in Electromagnetics, Wiley-IEEE Press, New York, 1993.

64. Chew, W. C., Waves and Fields in Inhomogenous Media, Wiley-IEEE Press, New York, 1999.

65. Hestenes, M. R. and E. Stiefel, "Methods of conjugate gradients for solving linear systems," Journal of Research of the National Bureau of Standards, Vol. 49, No. 6, 409-436, 1952.        Google Scholar

66. Vandervorst, H. A., "Bi-Cgstab --- A fast and smoothly converging variant of Bi-Cg for the solution of nonsymmetric linear-systems," Siam Journal on Scientific and Statistical Computing, Vol. 13, No. 2, 631-644, 1992.        Google Scholar

67. Chew, W. C., J. M. Jin, C. C. Lu, E. Michielssen, and J. M. M. Song, "Fast solution methods in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 533-543, 1997.        Google Scholar

68. Davis, T. A. and I. S. Duff, "An unsymmetric-pattern multifrontal method for sparse LU factorization," Siam Journal on Matrix Analysis and Applications, Vol. 18, No. 1, 140-158, 1997.        Google Scholar

69. Greengard, L. and V. Rokhlin, "A fast algorithm for particle simulations," Journal of Computational Physics, Vol. 73, No. 2, 325-348, 1987.        Google Scholar

70. Catedra, M. F., E. Gago, and L. Nuno, "A numerical scheme to obtain the RCS of 3-dimensional bodies of resonant size using the conjugate-gradient method and the fast fourier-transform," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 5, 528-537, 1989.        Google Scholar

71. Brandt, A., "Multilevel computations of integral-transforms and particle interactions with oscillatory Kernels," Computer Physics Communications, Vol. 65, No. 1-3, 24-38, 1991.        Google Scholar

72. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," Journal of the Optical Society of America A --- Optics Image Science and Vision, Vol. 11, No. 4, 1491-1499, 1994.        Google Scholar

73. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, Vol. 16, No. 10, 1059-1072, 1997.        Google Scholar

74. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 10, 1488-1493, 1997.        Google Scholar

75. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, Wiley, 2000.

76. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," Journal of the Optical Society of America A --- Optics Image Science and Vision, Vol. 12, No. 5, 1068-1076, 1995.        Google Scholar

77. Yonekura, J., M. Ikeda, and T. Baba, "Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method," Journal of Lightwave Technology, Vol. 17, No. 8, 1500-1508, 1999.        Google Scholar

78. Bienstman, P. and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Optical and Quantum Electronics, Vol. 33, No. 4-5, 327-341, 2001.        Google Scholar

79. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Optics Express, Vol. 8, No. 3, 173-190, 2001.        Google Scholar

80. Chen, L. Z., W. E. I. Sha, and W. C. H. Choy, "Light harvesting improvement of organic solar cells with self-enhanced active layer designs," Optics Express, Vol. 20, No. 7, 8175-8185, 2012.        Google Scholar

81. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates," Microwave and Optical Technology Letters, Vol. 7, No. 13, 599-604, 1994.        Google Scholar

82. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 127, No. 2, 363-379, 1996.        Google Scholar

83. Selberherr, S., Analysis and Simulation of Semiconductor Devices, Springer, 1984.

84. Koster, L. J. A., E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, "Device model for the operation of polymer/fullerene bulk heterojunction solar cells," Physical Review B, Vol. 72, No. 8, 085205, 2005.        Google Scholar

85. Li, X. F., N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, "Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells," Optics Express, Vol. 19, No. 14, A888-A896, 2011.        Google Scholar

86. Sha, W. E. I., W. C. H. Choy, Y. M. Wu, and W. C. Chew, "Optical and electrical study of organic solar cells with a 2D grating anode," Optics Express, Vol. 20, No. 3, 2572-2580, 2012.        Google Scholar

87. Sievers, D. W., V. Shrotriya, and Y. Yang, "Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells," Journal of Applied Physics, Vol. 100, No. 11, 114509, 2006.        Google Scholar

88. Onsager, L., "Initial recombination of ions," Physical Review, Vol. 54, No. 8, 554-557, 1938.        Google Scholar

89. Braun, C. L., "Electric-field assisted dissociation of charge-transfer states as a mechanism of photocarrier production," Journal of Chemical Physics, Vol. 80, No. 9, 4157-4161, 1984.        Google Scholar

90. Langevin, P., "Recombinaison et mobilites des ions dans les gaz," Ann. Chim. Phys., Vol. 28, 433-530, 1903.        Google Scholar

91. Scott, J. C. and G. G. Malliaras, "Charge injection and recombination at the metal-organic interface," Chemical Physics Letters, Vol. 299, No. 2, 115-119, 1999.        Google Scholar

92. Sha, W. E. I., W. C. H. Choy, and W. C. Chew, "The roles of metallic rectangular-grating and planar anodes in the photocarrier generation and transport of organic solar cells," Applied Physics Letters, Vol. 101, No. 22, 223302, 2012.        Google Scholar

93. Choi, H., J. P. Lee, S. J. Ko, J. W. Jung, H. Park, S. Yoo, O. Park, J. R. Jeong, S. Park, and J. Y. Kim, "Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells," Nano Letters, Vol. 13, No. 5, 2204-2208, 2013.        Google Scholar

94. Duche, D., P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, "Improving light absorption in organic solar cells by plasmonic contribution," Solar Energy Materials and Solar Cells, Vol. 93, No. 8, 1377-1382, 2009.        Google Scholar

95. Kim, C. H., S. H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S. J. Moon, J. H. Bahng, N. A. Kotov, and S. H. Jin, "Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications," ACS Nano, Vol. 5, No. 4, 3319-3325, 2011.        Google Scholar

96. Kim, K. and D. L. Carroll, "Roles of Au and Ag nanoparticles in e±ciency enhancement of poly(3-octylthiophene)/C-60 bulk heterojunction photovoltaic devices," Applied Physics Letters, Vol. 87, No. 20, 203113-3, 2005.        Google Scholar

97. Kochergin, V., L. Neely, C. Y. Jao, and H. D. Robinson, "Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices," Applied Physics Letters, Vol. 98, No. 13, 2011.        Google Scholar

98. Naidu, B. V. K., J. S. Park, S. C. Kim, S. M. Park, E. J. Lee, K. J. Yoon, S. J. Lee, J. W. Lee, Y. S. Gal, and S. H. Jin, "Novel hybrid polymer photovoltaics made by generating silver nanoparticles in polymer: Fullerene bulk-heterojunction structures," Solar Energy Materials and Solar Cells, Vol. 92, No. 4, 397-401, 2008.        Google Scholar

99. Niesen, B., B. P. Rand, P. van Dorpe, D. Cheyns, H. Shen, B. Maes, and P. Heremans, "Near-field interactions between metal nanoparticle surface plasmons and molecular excitons in thin-films. Part I: Absorption," The Journal of Physical Chemistry C, Vol. 116, No. 45, 24206-24214, 2012.        Google Scholar

100. Paci, B., A. Generosi, V. R. Albertini, G. D. Spyropoulos, E. Stratakis, and E. Kymakis, "Enhancement of photo/thermal stability of organic bulk heterojunction photovoltaic devices via gold nanoparticles doping of the active layer," Nanoscale, Vol. 4, No. 23, 7452-7459, 2012.        Google Scholar

101. Paci, B., G. D. Spyropoulos, A. Generosi, D. Bailo, V. R. Albertini, E. Stratakis, and E. Kymakis, "Enhanced structural stability and performance durability of bulk heterojunction photovoltaic devices incorporating metallic nanoparticles," Advanced Functional Materials, Vol. 21, No. 18, 3573-3582, 2011.        Google Scholar

102. Qu, D., F. Liu, Y. D. Huang, W. L. Xie, and Q. Xu, "Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles," Optics Express, Vol. 19, No. 24, 24795-24803, 2011.        Google Scholar

103. Shen, H. H., P. Bienstman, and B. Maes, "Plasmonic absorption enhancement in organic solar cells with thin active layers," Journal of Applied Physics, Vol. 106, No. 7, 073109, 2009.        Google Scholar

104. Spyropoulos, G. D., M. Stylianakis, E. Stratakis, and E. Kymakis, "Plasmonic organic photovoltaics doped with metal nanoparticles," Photonics and Nanostructures-Fundamentals and Applications, Vol. 9, No. 2, 184-189, 2011.        Google Scholar

105. Spyropoulos, G. D., M. M. Stylianakis, E. Stratakis, and E. Kymakis, "Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer," Applied Physics Letters, Vol. 100, No. 21, 213904, 2012.        Google Scholar

106. Szeremeta, J., M. Nyk, A. Chyla, W. Strek, and M. Samoc, "Enhancement of photoconduction in a conjugated polymer through doping with copper nanoparticles," Optical Materials,, Vol. 33, No. 9, 1372-1376, 2011.        Google Scholar

107. Topp, K., H. Borchert, F. Johnen, A. V. Tune, M. Knipper, E. von Hauff, J. Parisi, and K. Al-Shamery, "Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells," Journal of Physical Chemistry A, Vol. 114, No. 11, 3981-3989, 2010.        Google Scholar

108. Vedraine, S., P. Torchio, A. Merlen, J. Bagierek, F. Flory, A. Sangar, and L. Escoubas, "Optical characterization of organic blend films integrating metallic nanoparticles," Solar Energy Materials and Solar Cells, Vol. 102, 31-35, 2012.        Google Scholar

109. Wang, D. H., D. Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, "Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles," Angewandte Chemie-International Edition, Vol. 50, No. 24, 5519-5523, 2011.        Google Scholar

110. Wang, D. H., J. K. Kim, G. H. Lim, K. H. Park, O. O. Park, B. Lim, and J. H. Park, "Enhanced light harvesting in bulk heterojunction photovoltaic devices with shape-controlled Ag nanomaterials: Ag nanoparticles versus Ag nanoplates," Rsc Advances, Vol. 2, No. 18, 7268-7272, 2012.        Google Scholar

111. Wang, D. H., K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, "Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters," Advanced Energy Materials, Vol. 1, No. 5, 766-770, 2011.        Google Scholar

112. Xue, M., L. Li, B. J. T. de Villers, H. J. Shen, J. F. Zhu, Z. B. Yu, A. Z. Stieg, Q. B. Pei, B. J. Schwartz, and K. L. Wang, "Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles," Applied Physics Letters, Vol. 98, No. 25, 253302, 2011.        Google Scholar

113. Zhu, J. F., M. Xue, H. J. Shen, Z. Wu, S. Kim, J. J. Ho, A. Hassani-Afshar, B. Q. Zeng, and K. L. Wang, "Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres," Applied Physics Letters, Vol. 98, No. 15, 151110, 2011.        Google Scholar

114. Hiramoto, M., H. Fukusumi, and M. Yokoyama, "Organic solar-cell based on multistep charge separation system," Applied Physics Letters, Vol. 61, No. 21, 2580-2582, 1992.        Google Scholar

115. Ma, T. L., "Progress in a new type of plastic organic solar cell," Progress in Chemistry, Vol. 18, No. 2-3, 176-181, 2006.        Google Scholar

116. Takahashi, K., N. Kuraya, T. Yamaguchi, T. Komura, and K. Murata, "Three-layer organic solar cell with high-power conversion e±ciency of 3.5%," Solar Energy Materials and Solar Cells, Vol. 61, No. 4, 403-416, 2000.        Google Scholar

117. Niesen, B., B. P. Rand, P. van Dorpe, D. Cheyns, E. Fron, M. van der Auweraer, and P. Heremans, "Near-field interactions between metal nanoparticle surface plasmons and molecular excitons in thin-films. Part II: Emission," Journal of Physical Chemistry C, Vol. 116, No. 45, 24215-24223, 2012.        Google Scholar

118. Chen, H. C., S. W. Chou, W. H. Tseng, I. Chen, P. Wen, C. C. Liu, C. Liu, C. L. Liu, C. H. Chen, and C. I. Wu, "Large AuAg alloy nanoparticles synthesized in organic media using a one-pot reaction: Their applications for high-performance bulk heterojunction solar cells," Advanced Functional Materials, Vol. 22, No. 19, 3975-3984, 2012.        Google Scholar

119. Stavytska-Barba, M., M. Salvador, A. Kulkarni, D. S. Ginger, and A. M. Kelley, "Plasmonic enhancement of raman scattering from the organic solar cell material P3HT/PCBM by triangular silver nanoprisms," The Journal of Physical Chemistry C, Vol. 115, No. 42, 20788-20794, 2011.        Google Scholar

120. Green, M. A. and S. Pillai, "Harnessing plasmonics for solar cells," Nat. Photon., Vol. 6, No. 3, 130-132, 2012.        Google Scholar

121. Wang, D. H., D. Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, "Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles," Angewandte Chemie International Edition, Vol. 50, No. 24, 5519-5523, 2011.        Google Scholar

122. Wu, J.-L., F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, "Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells," ACS Nano, Vol. 5, No. 2, 959-967, 2011.        Google Scholar

123. Chen, F.-C., J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, "Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles," Applied Physics Letters, Vol. 95, No. 1, 013305, 2009.        Google Scholar

124. Kim, Y.-H., S.-H. Lee, J. Noh, and S.-H. Han, "Performance and stability of electroluminescent device with self-assembled layers of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and polyelectrolytes," Thin Solid Films, Vol. 510, No. 1-2.        Google Scholar