1. Shaw, P. E., A. Ruseckas, and I. D. W. Samuel, "Exciton diffusion measurements in poly(3-hexylthiophene)," Advanced Materials, Vol. 20, No. 18, 3516-3520, 2008. Google Scholar
2. Mcculloch, I., M. Heeney, C. Bailey, K. Genevicius, M. I. M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. M. Zhang, M. L. Chabinyc, R. J. Kline, M. D. Mcgehee, and M. F. Toney, "Liquid-crystalline semiconducting polymers with high charge-carrier mobility,", Vol. 5, No. 4, 328-333, 2006. Google Scholar
3. Zaumseil, J. and H. Sirringhaus, "Electron and ambipolar transport in organic field-effect transistors," Chemical Reviews, Vol. 107, No. 4, 1296-1323, 2007. Google Scholar
4. Fung, D. D. S., L. Qiao, W. C. H. Choy, C.Wang, E.Wei, F. Xie, and S. He, "Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer," Journal of Materials Chemistry, Vol. 21, No. 41, 16349-16356, 2011. Google Scholar
5. Xie, F. X., W. C. H. Choy, C. C. D. Wang, E. Wei, and D. D. S. Fung, "Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers," Applied Physics Letters, Vol. 99, No. 153304, 2011. Google Scholar
6. Yang, J., J. You, C.-C. Chen, W.-C. Hsu, H.-R. Tan, X. W. Zhang, Z. Hong, and Y. Yang, "Plasmonic polymer tandem solar cell," ACS Nano, Vol. 5, No. 8, 6210-6217, 2011. Google Scholar
7. Lu, L. Y., Z. Q. Luo, T. Xu, and L. P. Yu, "Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells," Nano Letters, Vol. 13, No. 1, 59-64, 2013. Google Scholar
8. Jankovic, V., Y. Yang, J. B. You, L. T. Dou, Y. S. Liu, P. Cheung, J. P. Chang, and Y. Yang, "Active layer-incorporated, spectrally tuned Au/SiO2 core/shell nanorod-based light trapping for organic photovoltaics," ACS Nano, Vol. 7, No. 5, 3815-3822, 2013. Google Scholar
9. Li, X. H., W. C. H. Choy, H. F. Lu, W. E. I. Sha, and A. H. P. Ho, "Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles," Advanced Functional Materials, Vol. 23, No. 21, 2728-2735, 2013. Google Scholar
10. Kulkarni, A. P., K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, "Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms," Nano Letters, Vol. 10, No. 4, 1501-1505, 2010. Google Scholar
11. Gramotnev, D. K. and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nature Photonics, Vol. 4, No. 2, 83-91, 2010. Google Scholar
12. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003. Google Scholar
13. Shalaev, V. M. and S. Kawata, Nanophotonics with Surface Plasmons, Elsevier, 2007.
14. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, 2007.
15. Giannini, V., A. I. Fernandez-Dominguez, Y. Sonnefraud, T. Roschuk, R. Fernandez-Garcia, and S. A. Maier, "Controlling light localization and light-matter interactions with nanoplasmonics," Small, Vol. 6, No. 22, 2498-2507, 2010. Google Scholar
16. Raether, H., "Surface Plasmons on Smooth and Rough Surfaces and on Gratings," Springer-Verlag, Berlin, 1988. Google Scholar
17. Kim, S.-S., S.-I. Na, J. Jo, D.-Y. Kim, and Y.-C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Applied Physics Letters, Vol. 93, No. 7, 073303-073307, 2008. Google Scholar
18. Berredjem, Y., J. C. Bernµede, S. Ouro Djobo, L. Cattin, M. Morsli, and A. Boulmokh, "On the improvement of the e±ciency of organic photovoltaic cells by the presence of an ultra-thin metal layer at the interface organic/ITO," The European Physical Journal --- Applied Physics, Vol. 44, No. 3, 223-228, 2008. Google Scholar
19. Kouskoussa, B., M. Morsli, K. Benchouk, G. Louarn, L. Cattin, A. Khelil, and J. C. Bernµede, "On the improvement of the anode/organic material interface in organic solar cells by the presence of an ultra-thin gold layer," Physica Status Solidi (A), Vol. 206, No. 2, 311-315, 2009. Google Scholar
20. Wang, C.-D. and W. C. H. Choy, "Efficient hole collection by introducing ultra-thin UV-ozone treated Au in polymer solar cells," Solar Energy Materials and Solar Cells, Vol. 95, No. 3, 904-908, 2011. Google Scholar
21. Zhang, D., W. C. H. Choy, C. C. D. Wang, X. Li, L. Fan, K. Wang, and H. Zhu, "Polymer solar cells with gold nanoclusters decorated multi-layer graphene as transparent electrode," Applied Physics Letters, Vol. 99, No. 2, 223302, 2011. Google Scholar
22. Zhang, D., F. Xie, P. Lin, and W. C. H. Choy, "Al-TiO2 composite-modified single-layer graphene as an efficient transparent cathode for organic solar cells," ACS Nano, Vol. 7, No. 2, 1740-1747, 2013. Google Scholar
23. Zhang, D., W. C. H. Choy, F. Xie, W. E. I. Sha, X. Li, B. Ding, K. Zhang, F. Huang, and Y. Cao, "Plasmonic electrically functionalized TiO2 for high-performance organic solar cells," Advanced Functional Materials, Vol. 23, No. 34, 4255-4261, 2013. Google Scholar
24. Chopra, K. L., P. D. Paulson, and V. Dutta, "Thin-film solar cells: An overview," Progress in Photovoltaics, Vol. 12, No. 2-3, 69-92, 2004. Google Scholar
25. Hoppe, H. and N. S. Sariciftci, "Organic solar cells: An overview," Journal of Materials Research, Vol. 19, No. 7, 1924-1945, 2004. Google Scholar
26. Brabec, C. J., S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, and S. P. Williams, "Polymer-fullerene bulk-heterojunction solar cells," Advanced Materials, Vol. 22, No. 34, 3839-3856, 2010. Google Scholar
27. Deibel, C. and V. Dyakonov, "Polymer-fullerene bulk heterojunction solar cells," Reports on Progress in Physics, Vol. 73, No. 9, 096401, 2010. Google Scholar
28. Ferry, V. E., L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic nanostructure design for efficient light coupling into solar cells," Nano Letters, Vol. 8, No. 12, 4391-4397, 2008. Google Scholar
29. Sha, W. E. I., W. C. H. Choy, and W. C. Chew, "A comprehensive study for the plasmonic thin-film solar cell with periodic structure," Optics Express, Vol. 18, No. 6, 5993-6007, 2010. Google Scholar
30. Tikhodeev, S. G., A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, "Quasiguided modes and optical properties of photonic crystal slabs," Physical Review B, Vol. 66, No. 4, 045102, 2002. Google Scholar
31. Luk'yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Materials, Vol. 9, No. 9, 707-715, 2010. Google Scholar
32. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Reviews of Modern Physics, Vol. 82, No. 3, 2257-2298, 2010. Google Scholar
33. Martins, E. R., J. T. Li, Y. K. Liu, J. Y. Zhou, and T. F. Krauss, "Engineering gratings for light trapping in photovoltaics: The supercell concept," Physical Review B, Vol. 86, No. 4, 041404, 2012. Google Scholar
34. Chen, L. Z., W. C. H. Choy, and W. E. I. Sha, "Broadband absorption enhancement of organic solar cells with interstitial lattice patterned metal nanoparticles," Applied Physics Letters, Vol. 102, No. 25, 251112-251112-4, 2013. Google Scholar
35. Abass, A., K. Q. Le, A. Alu, M. Burgelman, and B. Maes, "Dual-interface gratings for broadband absorption enhancement in thin-film solar cells," Physical Review B, Vol. 85, No. 11, 115449, 2012. Google Scholar
36. Catchpole, K. R. and A. Polman, "Design principles for particle plasmon enhanced solar cells," Applied Physics Letters, Vol. 93, No. 19, 191113, 2008. Google Scholar
37. Mokkapati, S., F. J. Beck, A. Polman, and K. R. Catchpole, "Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells," Applied Physics Letters, Vol. 95, No. 5, 053115, 2009. Google Scholar
38. Pala, R. A., J. White, E. Barnard, J. Liu, and M. L. Brongersma, "Design of plasmonic thin-film solar cells with broadband absorption enhancements," Advanced Materials, Vol. 21, No. 34, 3504-3509, 2009. Google Scholar
39. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Materials, Vol. 9, No. 3, 205-213, 2010. Google Scholar
40. Kang, M. G., T. Xu, H. J. Park, X. G. Luo, and L. J. Guo, "Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes," Advanced Materials, Vol. 22, No. 39, 4378-4383, 2010. Google Scholar
41. Lee, J. Y. and P. Peumans, "The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer," Optics Express, Vol. 18, No. 10, 10078-10087, 2010. Google Scholar
42. Diukman, I., L. Tzabari, N. Berkovitch, N. Tessler, and M. Orenstein, "Controlling absorption enhancement in organic photovoltaic cells by patterning Au nano disks within the active layer," Optics Express, Vol. 19, No. 1, A64-A71, 2011. Google Scholar
43. Sha, W. E. I., W. C. H. Choy, Y. G. Liu, and W. C. Chew, "Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells," Applied Physics Letters, Vol. 99, No. 11, 113304, 2011. Google Scholar
44. Wang, C. C. D., W. C. H. Choy, C. Duan, D. D. S. Fung, W. E. I. Sha, F.-X. Xie, F. Huang, and Y. Cao, "Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells," Journal of Materials Chemistry, Vol. 22, No. 3, 1206-1211, 2012. Google Scholar
45. Bai, W. L., Q. Q. Gan, G. F. Song, L. H. Chen, Z. Kafafi, and F. Bartoli, "Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics," Optics Express, Vol. 18, No. 23, A620-A630, 2010. Google Scholar
46. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, No. 5644, 419-422, 2003. Google Scholar
47. Nordlander, P., C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Letters, Vol. 4, No. 5, 899-903, 2004. Google Scholar
48. Sha, W. E. I., W. C. H. Choy, Y. P. P. Chen, and W. C. Chew, "Optical design of organic solar cell with hybrid plasmonic system," Optics Express, Vol. 19, No. 17, 15908-15918, 2011. Google Scholar
49. Li, X., W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, "Dual plasmonic nanostructures for high performance inverted organic solar cells," Advanced Materials, Vol. 24, No. 22, 3046-3052, 2012. Google Scholar
50. Bai, W. L., Q. Q. Gan, F. Bartoli, J. Zhang, L. K. Cai, Y. D. Huang, and G. F. Song, "Design of plasmonic back structures for e±ciency enhancement of thin-film amorphous Si solar cells," Optics Letters, Vol. 34, No. 23, 3725-3727, 2009. Google Scholar
51. Min, C. J., J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, "Enhancement of optical absorption in thin-¯lm organic solar cells through the excitation of plasmonic modes in metallic gratings," Applied Physics Letters, Vol. 96, No. 13, 133302, 2010. Google Scholar
52. Sha, W. E. I., W. C. H. Choy, and W. C. Chew, "Angular response of thin-film organic solar cells with periodic metal back nanostrips," Optics Letters, Vol. 36, No. 4, 478-480, 2011. Google Scholar
53. Khurgin, J. B., G. Sun, and R. A. Soref, "Practical limits of absorption enhancement near metal nanoparticles," Applied Physics Letters, Vol. 94, No. 7, 071103, 2009. Google Scholar
54. Akimov, Y. A., W. S. Koh, and K. Ostrikov, "Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes," Optics Express, Vol. 17, No. 2, 10195-10205, 2009. Google Scholar
55. Chew, W. C. and J. M. Jin, Fast and E±cient Algorithms in Computational Electromagnetics, Artech House, Boston, 2001.
56. Luebbers, R., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency-dependent finite-difference time-domain formulation for dispersive materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, No. 3, 222-227, 1990. Google Scholar
57. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 6, 792-797, 1996. Google Scholar
58. Sullivan, D. M., Electromagnetic Simulation Using the FDTD Method, Wiley-IEEE Press, New York, 2000.
59. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Boston, 2005.
60. Veronis, G. and S. H. Fan, "Overview of simulation techniques for plasmonic devices," Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, Eds., Springer, Dordrecht, Netherlands, 2007. Google Scholar
61. Veysoglu, M. E., R. T. Shin, and J. A. Kong, "A finite-difference time-domain analysis of wave scattering from periodic surfaces: Oblique-incidence case," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 12, 1595-1607, 1993. Google Scholar
62. Chew, W. C., M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool Publishers, 2009.
63. Jin, J. M., The Finite Element Method in Electromagnetics, Wiley-IEEE Press, New York, 1993.
64. Chew, W. C., Waves and Fields in Inhomogenous Media, Wiley-IEEE Press, New York, 1999.
65. Hestenes, M. R. and E. Stiefel, "Methods of conjugate gradients for solving linear systems," Journal of Research of the National Bureau of Standards, Vol. 49, No. 6, 409-436, 1952. Google Scholar
66. Vandervorst, H. A., "Bi-Cgstab --- A fast and smoothly converging variant of Bi-Cg for the solution of nonsymmetric linear-systems," Siam Journal on Scientific and Statistical Computing, Vol. 13, No. 2, 631-644, 1992. Google Scholar
67. Chew, W. C., J. M. Jin, C. C. Lu, E. Michielssen, and J. M. M. Song, "Fast solution methods in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 533-543, 1997. Google Scholar
68. Davis, T. A. and I. S. Duff, "An unsymmetric-pattern multifrontal method for sparse LU factorization," Siam Journal on Matrix Analysis and Applications, Vol. 18, No. 1, 140-158, 1997. Google Scholar
69. Greengard, L. and V. Rokhlin, "A fast algorithm for particle simulations," Journal of Computational Physics, Vol. 73, No. 2, 325-348, 1987. Google Scholar
70. Catedra, M. F., E. Gago, and L. Nuno, "A numerical scheme to obtain the RCS of 3-dimensional bodies of resonant size using the conjugate-gradient method and the fast fourier-transform," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 5, 528-537, 1989. Google Scholar
71. Brandt, A., "Multilevel computations of integral-transforms and particle interactions with oscillatory Kernels," Computer Physics Communications, Vol. 65, No. 1-3, 24-38, 1991. Google Scholar
72. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," Journal of the Optical Society of America A --- Optics Image Science and Vision, Vol. 11, No. 4, 1491-1499, 1994. Google Scholar
73. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, Vol. 16, No. 10, 1059-1072, 1997. Google Scholar
74. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 10, 1488-1493, 1997. Google Scholar
75. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications, Wiley, 2000.
76. Moharam, M. G., E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," Journal of the Optical Society of America A --- Optics Image Science and Vision, Vol. 12, No. 5, 1068-1076, 1995. Google Scholar
77. Yonekura, J., M. Ikeda, and T. Baba, "Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method," Journal of Lightwave Technology, Vol. 17, No. 8, 1500-1508, 1999. Google Scholar
78. Bienstman, P. and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Optical and Quantum Electronics, Vol. 33, No. 4-5, 327-341, 2001. Google Scholar
79. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Optics Express, Vol. 8, No. 3, 173-190, 2001. Google Scholar
80. Chen, L. Z., W. E. I. Sha, and W. C. H. Choy, "Light harvesting improvement of organic solar cells with self-enhanced active layer designs," Optics Express, Vol. 20, No. 7, 8175-8185, 2012. Google Scholar
81. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates," Microwave and Optical Technology Letters, Vol. 7, No. 13, 599-604, 1994. Google Scholar
82. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 127, No. 2, 363-379, 1996. Google Scholar
83. Selberherr, S., Analysis and Simulation of Semiconductor Devices, Springer, 1984.
84. Koster, L. J. A., E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, "Device model for the operation of polymer/fullerene bulk heterojunction solar cells," Physical Review B, Vol. 72, No. 8, 085205, 2005. Google Scholar
85. Li, X. F., N. P. Hylton, V. Giannini, K. H. Lee, N. J. Ekins-Daukes, and S. A. Maier, "Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells," Optics Express, Vol. 19, No. 14, A888-A896, 2011. Google Scholar
86. Sha, W. E. I., W. C. H. Choy, Y. M. Wu, and W. C. Chew, "Optical and electrical study of organic solar cells with a 2D grating anode," Optics Express, Vol. 20, No. 3, 2572-2580, 2012. Google Scholar
87. Sievers, D. W., V. Shrotriya, and Y. Yang, "Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells," Journal of Applied Physics, Vol. 100, No. 11, 114509, 2006. Google Scholar
88. Onsager, L., "Initial recombination of ions," Physical Review, Vol. 54, No. 8, 554-557, 1938. Google Scholar
89. Braun, C. L., "Electric-field assisted dissociation of charge-transfer states as a mechanism of photocarrier production," Journal of Chemical Physics, Vol. 80, No. 9, 4157-4161, 1984. Google Scholar
90. Langevin, P., "Recombinaison et mobilites des ions dans les gaz," Ann. Chim. Phys., Vol. 28, 433-530, 1903. Google Scholar
91. Scott, J. C. and G. G. Malliaras, "Charge injection and recombination at the metal-organic interface," Chemical Physics Letters, Vol. 299, No. 2, 115-119, 1999. Google Scholar
92. Sha, W. E. I., W. C. H. Choy, and W. C. Chew, "The roles of metallic rectangular-grating and planar anodes in the photocarrier generation and transport of organic solar cells," Applied Physics Letters, Vol. 101, No. 22, 223302, 2012. Google Scholar
93. Choi, H., J. P. Lee, S. J. Ko, J. W. Jung, H. Park, S. Yoo, O. Park, J. R. Jeong, S. Park, and J. Y. Kim, "Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells," Nano Letters, Vol. 13, No. 5, 2204-2208, 2013. Google Scholar
94. Duche, D., P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, "Improving light absorption in organic solar cells by plasmonic contribution," Solar Energy Materials and Solar Cells, Vol. 93, No. 8, 1377-1382, 2009. Google Scholar
95. Kim, C. H., S. H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S. J. Moon, J. H. Bahng, N. A. Kotov, and S. H. Jin, "Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications," ACS Nano, Vol. 5, No. 4, 3319-3325, 2011. Google Scholar
96. Kim, K. and D. L. Carroll, "Roles of Au and Ag nanoparticles in e±ciency enhancement of poly(3-octylthiophene)/C-60 bulk heterojunction photovoltaic devices," Applied Physics Letters, Vol. 87, No. 20, 203113-3, 2005. Google Scholar
97. Kochergin, V., L. Neely, C. Y. Jao, and H. D. Robinson, "Aluminum plasmonic nanostructures for improved absorption in organic photovoltaic devices," Applied Physics Letters, Vol. 98, No. 13, 2011. Google Scholar
98. Naidu, B. V. K., J. S. Park, S. C. Kim, S. M. Park, E. J. Lee, K. J. Yoon, S. J. Lee, J. W. Lee, Y. S. Gal, and S. H. Jin, "Novel hybrid polymer photovoltaics made by generating silver nanoparticles in polymer: Fullerene bulk-heterojunction structures," Solar Energy Materials and Solar Cells, Vol. 92, No. 4, 397-401, 2008. Google Scholar
99. Niesen, B., B. P. Rand, P. van Dorpe, D. Cheyns, H. Shen, B. Maes, and P. Heremans, "Near-field interactions between metal nanoparticle surface plasmons and molecular excitons in thin-films. Part I: Absorption," The Journal of Physical Chemistry C, Vol. 116, No. 45, 24206-24214, 2012. Google Scholar
100. Paci, B., A. Generosi, V. R. Albertini, G. D. Spyropoulos, E. Stratakis, and E. Kymakis, "Enhancement of photo/thermal stability of organic bulk heterojunction photovoltaic devices via gold nanoparticles doping of the active layer," Nanoscale, Vol. 4, No. 23, 7452-7459, 2012. Google Scholar
101. Paci, B., G. D. Spyropoulos, A. Generosi, D. Bailo, V. R. Albertini, E. Stratakis, and E. Kymakis, "Enhanced structural stability and performance durability of bulk heterojunction photovoltaic devices incorporating metallic nanoparticles," Advanced Functional Materials, Vol. 21, No. 18, 3573-3582, 2011. Google Scholar
102. Qu, D., F. Liu, Y. D. Huang, W. L. Xie, and Q. Xu, "Mechanism of optical absorption enhancement in thin film organic solar cells with plasmonic metal nanoparticles," Optics Express, Vol. 19, No. 24, 24795-24803, 2011. Google Scholar
103. Shen, H. H., P. Bienstman, and B. Maes, "Plasmonic absorption enhancement in organic solar cells with thin active layers," Journal of Applied Physics, Vol. 106, No. 7, 073109, 2009. Google Scholar
104. Spyropoulos, G. D., M. Stylianakis, E. Stratakis, and E. Kymakis, "Plasmonic organic photovoltaics doped with metal nanoparticles," Photonics and Nanostructures-Fundamentals and Applications, Vol. 9, No. 2, 184-189, 2011. Google Scholar
105. Spyropoulos, G. D., M. M. Stylianakis, E. Stratakis, and E. Kymakis, "Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer," Applied Physics Letters, Vol. 100, No. 21, 213904, 2012. Google Scholar
106. Szeremeta, J., M. Nyk, A. Chyla, W. Strek, and M. Samoc, "Enhancement of photoconduction in a conjugated polymer through doping with copper nanoparticles," Optical Materials,, Vol. 33, No. 9, 1372-1376, 2011. Google Scholar
107. Topp, K., H. Borchert, F. Johnen, A. V. Tune, M. Knipper, E. von Hauff, J. Parisi, and K. Al-Shamery, "Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells," Journal of Physical Chemistry A, Vol. 114, No. 11, 3981-3989, 2010. Google Scholar
108. Vedraine, S., P. Torchio, A. Merlen, J. Bagierek, F. Flory, A. Sangar, and L. Escoubas, "Optical characterization of organic blend films integrating metallic nanoparticles," Solar Energy Materials and Solar Cells, Vol. 102, 31-35, 2012. Google Scholar
109. Wang, D. H., D. Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, "Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles," Angewandte Chemie-International Edition, Vol. 50, No. 24, 5519-5523, 2011. Google Scholar
110. Wang, D. H., J. K. Kim, G. H. Lim, K. H. Park, O. O. Park, B. Lim, and J. H. Park, "Enhanced light harvesting in bulk heterojunction photovoltaic devices with shape-controlled Ag nanomaterials: Ag nanoparticles versus Ag nanoplates," Rsc Advances, Vol. 2, No. 18, 7268-7272, 2012. Google Scholar
111. Wang, D. H., K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, "Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters," Advanced Energy Materials, Vol. 1, No. 5, 766-770, 2011. Google Scholar
112. Xue, M., L. Li, B. J. T. de Villers, H. J. Shen, J. F. Zhu, Z. B. Yu, A. Z. Stieg, Q. B. Pei, B. J. Schwartz, and K. L. Wang, "Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles," Applied Physics Letters, Vol. 98, No. 25, 253302, 2011. Google Scholar
113. Zhu, J. F., M. Xue, H. J. Shen, Z. Wu, S. Kim, J. J. Ho, A. Hassani-Afshar, B. Q. Zeng, and K. L. Wang, "Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres," Applied Physics Letters, Vol. 98, No. 15, 151110, 2011. Google Scholar
114. Hiramoto, M., H. Fukusumi, and M. Yokoyama, "Organic solar-cell based on multistep charge separation system," Applied Physics Letters, Vol. 61, No. 21, 2580-2582, 1992. Google Scholar
115. Ma, T. L., "Progress in a new type of plastic organic solar cell," Progress in Chemistry, Vol. 18, No. 2-3, 176-181, 2006. Google Scholar
116. Takahashi, K., N. Kuraya, T. Yamaguchi, T. Komura, and K. Murata, "Three-layer organic solar cell with high-power conversion e±ciency of 3.5%," Solar Energy Materials and Solar Cells, Vol. 61, No. 4, 403-416, 2000. Google Scholar
117. Niesen, B., B. P. Rand, P. van Dorpe, D. Cheyns, E. Fron, M. van der Auweraer, and P. Heremans, "Near-field interactions between metal nanoparticle surface plasmons and molecular excitons in thin-films. Part II: Emission," Journal of Physical Chemistry C, Vol. 116, No. 45, 24215-24223, 2012. Google Scholar
118. Chen, H. C., S. W. Chou, W. H. Tseng, I. Chen, P. Wen, C. C. Liu, C. Liu, C. L. Liu, C. H. Chen, and C. I. Wu, "Large AuAg alloy nanoparticles synthesized in organic media using a one-pot reaction: Their applications for high-performance bulk heterojunction solar cells," Advanced Functional Materials, Vol. 22, No. 19, 3975-3984, 2012. Google Scholar
119. Stavytska-Barba, M., M. Salvador, A. Kulkarni, D. S. Ginger, and A. M. Kelley, "Plasmonic enhancement of raman scattering from the organic solar cell material P3HT/PCBM by triangular silver nanoprisms," The Journal of Physical Chemistry C, Vol. 115, No. 42, 20788-20794, 2011. Google Scholar
120. Green, M. A. and S. Pillai, "Harnessing plasmonics for solar cells," Nat. Photon., Vol. 6, No. 3, 130-132, 2012. Google Scholar
121. Wang, D. H., D. Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, "Enhancement of Donor-Acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles," Angewandte Chemie International Edition, Vol. 50, No. 24, 5519-5523, 2011. Google Scholar
122. Wu, J.-L., F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, "Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells," ACS Nano, Vol. 5, No. 2, 959-967, 2011. Google Scholar
123. Chen, F.-C., J.-L. Wu, C.-L. Lee, Y. Hong, C.-H. Kuo, and M. H. Huang, "Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles," Applied Physics Letters, Vol. 95, No. 1, 013305, 2009. Google Scholar
124. Kim, Y.-H., S.-H. Lee, J. Noh, and S.-H. Han, "Performance and stability of electroluminescent device with self-assembled layers of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and polyelectrolytes," Thin Solid Films, Vol. 510, No. 1-2. Google Scholar