Vol. 147
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-05-15
Photoacoustic Tomography: Principles and Advances (Invited Review)
By
Progress In Electromagnetics Research, Vol. 147, 1-22, 2014
Abstract
Photoacoustic tomography (PAT) is an emerging imaging modality that shows great potential for preclinical research and clinical practice. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous chromophores, such as oxy-hemoglobin and deoxy-hemoglobin, or exogenous contrast agents, such as organic dyes and nanoparticles. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Over the past decade, the photoacoustic technique has been evolving rapidly, leading to a variety of exciting discoveries and applications. This review covers the basic principles of PAT and its different implementations. Strengths of PAT are highlighted, along with the most recent imaging results.
Citation
Jun Xia, Junjie Yao, and Lihong V. Wang, "Photoacoustic Tomography: Principles and Advances (Invited Review)," Progress In Electromagnetics Research, Vol. 147, 1-22, 2014.
doi:10.2528/PIER14032303
References

1. Wang, L. V., "Multiscale photoacoustic microscopy and computed tomography," Nat. Photon., Vol. 3, 503-509, 2009.        Google Scholar

2. Wang, , L. V. and S. Hu, "Photoacoustic tomography: In vivo imaging from organelles to organs," Science, Vol. 335, 1458-1462, Mar. 23, 2012.        Google Scholar

3. Zhang, H. F., K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotech., Vol. 24, 848-851, 2006.        Google Scholar

4. Fang, H., K. Maslov, and L. V. Wang, "Photoacoustic Doppler effect from flowing small light-absorbing particles," Physical Review Letters, Vol. 99, 184501, Nov. 2, 2007.        Google Scholar

5. Yao, J., K. I. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, "Label-free oxygen-metabolic photoacoustic microscopy in vivo," Journal of Biomedical Optics, Vol. 16, 076003, Jul. 2011.        Google Scholar

6. Yao, J., J. Xia, K. I. Maslov, M. Nasiriavanaki, V. Tsytsarev, A. V. Demchenko, and L. V. Wang, "Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo," Neuro. Image, Vol. 64, 257-266, 2013.        Google Scholar

7. Chatni, M. R., J. Xia, R. Sohn, K. Maslov, Z. Guo, Y. Zhang, K. Wang, Y. Xia, M. Anastasio, J. Arbeit, and L. V. Wang, "Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography," Journal of Biomedical Optics, Vol. 17, 076012, 2012.        Google Scholar

8. Jin, Y., C. Jia, S.-W. Huang, M. O'Donnell, and X. Gao, "Multifunctional nanoparticles as coupled contrast agents," Nat. Commun., Vol. 1, 41, 2010.        Google Scholar

9. Lovell, J. F., C. S. Jin, E. Huynh, H. Jin, C. Kim, J. L. Rubinstein, W. C. W. Chan, W. Cao, L. V. Wang, and G. Zheng, "Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents," Nat. Mater., Vol. 10, 324-332, 2011.        Google Scholar

10. Wilson, K., K. Homan, and S. Emelianov, "Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging," Nat. Commun., Vol. 3, 10, Jan. 2012.        Google Scholar

11. Razansky, D., M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, "Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo," Nat. Photon., Vol. 3, 412-417, 2009.        Google Scholar

12. Filonov, G. S., A. Krumholz, J. Xia, J. Yao, L. V. Wang, and V. V. Verkhusha, "Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fuorescent probe," Angewandte Chemie International Edition, Vol. 51, 1448-1451, 2012.        Google Scholar

13. Oladipupo, S., S. Hu, J. Kovalski, J. J. Yao, A. Santeford, R. E. Sohn, R. Shohet, K. Maslov, L. H. V. Wang, and J. M. Arbeit, "VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting," Proceedings of the National Academy of Sciences of the United States of America, Vol. 108, 13264-13269, Aug. 9, 2011.        Google Scholar

14. Oladipupo, S. S., S. Hu, A. C. Santeford, J. J. Yao, J. R. Kovalski, R. V. Shohet, K. Maslov, L. V. Wang, and J. M. Arbeit, "Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence," Blood, Vol. 117, 4142-4153, Apr. 14, 2011.        Google Scholar

15. Bitton, R., R. Zemp, J. Yen, L. V. Wang, and K. K. Shung, "A 3-D high-frequency array based 16 channel photoacoustic microscopy system for in vivo micro-vascular imaging," IEEE Trans. Med. Imaging, Vol. 28, 1190-1197, Aug. 2009.        Google Scholar

16. Xia, J. and L. Wang, "Small-animal whole-body photoacoustic tomography: A review," IEEE Transactions on Biomedical Engineering, Vol. 61, No. 5, 1380-1389, 2013.        Google Scholar

17. Staley, J., P. Grogan, A. K. Samadi, H. Cui, M. S. Cohen, and X. Yang, "Growth of melanoma brain tumors monitored by photoacoustic microscopy," Journal of Biomedical Optics, Vol. 15, 040510, Jul.-Aug. 2010.        Google Scholar

18. Chen, S. L., T. Ling, S. W. Huang, H. Won Baac, and L. J. Guo, "Photoacoustic correlation spectroscopy and its application to low-speed flow measurement," Optics Letters, Vol. 35, 1200-1202, Apr. 15, 2010.        Google Scholar

19. Cui, H. Z. and X. M. Yang, "In vivo imaging and treatment of solid tumor using integrated photoacoustic imaging and high intensity focused ultrasound system," Medical Physics, Vol. 37, 4777-4781, Sep. 2010.        Google Scholar

20. De la Zerda, A., Z. A. Liu, S. Bodapati, R. Teed, S. Vaithilingam, B. T. Khuri-Yakub, X. Y. Chen, H. J. Dai, and S. S. Gambhir, "Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice," Nano Letters, Vol. 10, 2168-2172, Jun. 2010.        Google Scholar

21. Li, L., H. F. Zhang, R. J. Zemp, K. Maslov, and L.Wang, "Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy," J. Innov. Opt. Health Sci., Vol. 1, 207-215, Oct. 1, 2008.        Google Scholar

22. Li, M. L., J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. H. V. Wang, "In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature," Journal of Biomedical Optics, Vol. 14, 010507, Jan.-Feb. 2009.        Google Scholar

23. Li, M., J.-T. Oh, X. Xie, G. Ku, W. Wang, C. Li, G. Lungu, G. Stoica, and L. V. Wang, "Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography," Proceedings of the IEEE, Vol. 96, 481-489, 2008.        Google Scholar

24. Olafsson, R., D. R. Bauer, L. G. Montilla, and R. S. Witte, "Real-time, contrast enhanced photoacoustic imaging of cancer in a mouse window chamber," Optics Express, Vol. 18, 18625-18632, Aug. 30, 2010.        Google Scholar

25. Hu, S., K. Maslov, V. Tsytsarev, and L. V. Wang, "Functional transcranial brain imaging by optical-resolution photoacoustic microscopy," Journal of Biomedical Optics, Vol. 14, 040503, Jul.-Aug. 2009.        Google Scholar

26. Wang, X. D., G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. H. V. Wang, "Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent," Optics Letters, Vol. 29, 730-732, Apr. 1, 2004.        Google Scholar

27. Liao, L. D., M. L. Li, H. Y. Lai, Y. Y. I. Shih, Y. C. Lo, S. N. Tsang, P. C. P. Chao, C. T. Lin, F. S. Jaw, and Y. Y. Chen, "Imaging brain hemodynamic changes during rat forepaw electrical stimulation using functional photoacoustic microscopy," NeuroImage, Vol. 52, 562-570, Aug. 15, 2010.        Google Scholar

28. Tsytsarev, V., S. Hu, J. Yao, K. Maslov, D. L. Barbour, and L. V. Wang, "Photoacoustic microscopy of microvascular responses to cortical electrical stimulation," Journal of Biomedical Optics, Vol. 16, 076002, Jul. 2011.        Google Scholar

29. Nasiriavanaki, M., J. Xia, H. Wan, A. Q. Bauer, J. P. Culver, and L. V. Wang, "High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain," Proc. Natl. Acad. Sci. USA, Vol. 111, 21-26, Jan. 7, 2014.        Google Scholar

30. Subach, F. V., L. J. Zhang, T. W. J. Gadella, N. G. Gurskaya, K. A. Lukyanov, and V. V. Verkhusha, "Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET," Chemistry & Biology, Vol. 17, 745-755, Jul. 30, 2010.        Google Scholar

31. Jiao, S. L., M. S. Jiang, J. M. Hu, A. Fawzi, Q. F. Zhou, K. K. Shung, C. A. Puliafito, and H. F. Zhang, "Photoacoustic ophthalmoscopy for in vivo retinal imaging," Optics Express, Vol. 18, 3967-3972, Feb. 15, 2010.        Google Scholar

32. Xie, Z. X., S. L. Jiao, H. F. Zhang, and C. A. Puliafito, "Laser-scanning optical-resolution photoacoustic microscopy," Optics Letters, Vol. 34, 1771-1773, Jun. 15, 2009.        Google Scholar

33. Silverman, R. H., F. Kong, Y. C. Chen, H. O. Lloyd, H. H. Kim, J. M. Cannata, K. K. Shung, and D. J. Coleman, "High-resolution photoacoustic imaging of ocular tissues," Ultrasound Med. Biol., Vol. 36, 733-742, May 2010.        Google Scholar

34. Song, W., Q. Wei, T. Liu, D. Kuai, J. M. Burke, S. Jiao, and H. F. Zhang, "Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform," Journal of Biomedical Optics, Vol. 17, 061206-7, 2012.        Google Scholar

35. Zhang, H. F., K. Maslov, M. L. Li, G. Stoica, and L. H. V. Wang, "In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy," Optics Express, Vol. 14, 9317-9323, Oct. 2, 2006.        Google Scholar

36. Favazza, C. P., L. A. Cornelius, and L. H. V. Wang, "In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin," Journal of Biomedical Optics, Vol. 16, 026004, Feb. 2011.        Google Scholar

37. Favazza, C., O. Jassim, L. V. Wang, and L. Cornelius, "In vivo photoacoustic microscopy of human skin," Journal of Investigative Dermatology, Vol. 130, S145, Apr. 2010.        Google Scholar

38. Song, L. A., K. Maslov, K. K. Shung, and L. H. V. Wang, "Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo," Journal of Biomedical Optics, Vol. 15, 021303, Mar.-Apr. 2010.        Google Scholar

39. Favazza, C., K. Maslov, L. Cornelius, and L. V. Wang, "In vivo functional human imaging using photoacoustic microscopy: Response to ischemic and thermal stimuli," Photons Plus Ultrasound: Imaging and Sensing 2010, 75640Z-75640Z-6, San Francisco, California, USA, 2010.        Google Scholar

40. Rowland, K. J., J. J. Yao, L. D. Wang, C. R. Erwin, K. I. Maslov, L. H. V. Wang, and B. W.Warner, "Immediate alterations in intestinal oxygen saturation and blood fow after massive small bowel resection as measured by photoacoustic microscopy," Journal of Pediatric Surgery,, Vol. 47, 1143-1149, Jun. 2012.        Google Scholar

41. Yao, J., K. I. Maslov, E. R. Puckett, K. J. Rowland, B. W. Warner, and L. V. Wang, "Double-illumination photoacoustic microscopy," Optics Letters, Vol. 37, 659-661, 2012.        Google Scholar

42. Yang, J.-M., R. Chen, C. Favazza, J. Yao, Q. Zhou, K. K. Shung, and L. V. Wang, "A 2.5-mm outer diameter photoacoustic endoscopic mini-probe based on a highly sensitive PMN-PT ultrasonic transducer," Photons Plus Ultrasound: Imaging and Sensing 2012, 82233M-82233M-6, San Francisco, California, USA, 2012.        Google Scholar

43. Yang, J.-M., C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, "Toward dual-wavelength functional photoacoustic endoscopy: Laser and peripheral optical systems development," Photons Plus Ultrasound: Imaging and Sensing 2012, 822316-822316-7, San Francisco, California, USA, 2012.        Google Scholar

44. Yao, J., K. J. Rowland, L. Wang, K. I. Maslov, B. W. Warner, and L. V. Wang, "Double-illumination photoacoustic microscopy of intestinal hemodynamics following massive small bowel resection," Photons Plus Ultrasound: Imaging and Sensing 2012, 82233V-82233V-7, San Francisco, California, USA, 2012.        Google Scholar

45. Taruttis, A., E. Herzog, D. Razansky, and V. Ntziachristos, "Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography," Optics Express, Vol. 18, 19592-19602, Sep. 13, 2010.        Google Scholar

46. Zhang, C., K. Maslov, and L. H. V. Wang, "Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo," Optics Letters, Vol. 35, 3195-3197, Oct. 1, 2010.        Google Scholar

47. Zemp, R. J., L. Song, R. Bitton, K. K. Shung, and L. V. Wang, "Realtime photoacoustic microscopy of murine cardiovascular dynamics," Optics Express, Vol. 16, 18551-18556, Oct. 27, 2008.        Google Scholar

48. Wang, X., Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotech., Vol. 21, 803-806, 2003.        Google Scholar

49. Maslov, K. and L. V. Wang, "Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser," Journal of Biomedical Optics, Vol. 13, 024006, 2008.        Google Scholar

50. Lashkari, B. and A. Mandelis, "Photoacoustic radar imaging signal-to-noise ratio, contrast, and resolution enhancement using nonlinear chirp modulation," Opt. Lett., Vol. 35, 1623-1625, 2010.        Google Scholar

51. Lashkari, B. and A. Mandelis, "Comparison between pulsed laser and frequency-domain photoacoustic modalities: Signal-to-noise ratio, contrast, resolution, and maximum depth detectivity," Review of Scientific Instruments, Vol. 82, No. 9, 094903, Sep. 2011.        Google Scholar

52. Paproski, R. J., A. E. Forbrich, K. Wachowicz, M. M. Hitt, and R. J. Zemp, "Tyrosinase as a dual reporter gene for both photoacoustic and magnetic resonance imaging," Biomedical Optics Express, Vol. 2, 771-780, Apr. 1, 2011.        Google Scholar

53. Wang, L. V., "Tutorial on photoacoustic microscopy and computed tomography," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, 171-179, 2008.        Google Scholar

54. Krumholz, A., S. J. Vanvickle-Chavez, J. Yao, T. P. Fleming, W. E. Gillanders, and L. V. Wang, "Photoacoustic microscopy of tyrosinase reporter gene in vivo," Journal of Biomedical Optics, Vol. 16, 080503, Aug. 2011.        Google Scholar

55. Pramanik, M. and L. V. Wang, "Thermoacoustic and photoacoustic sensing of temperature," Journal of Biomedical Optics, Vol. 14, 054024, Sep.-Oct. 2009.        Google Scholar

56. Wang, L., J. Xia, J. Yao, K. I. Maslov, and L. V. Wang, "Ultrasonically encoded photoacoustic flowgraphy in biological tissue," Physical Review Letters, Vol. 111, 204301, 2013.        Google Scholar

57. Xu, M. H. and L. H. V. Wang, "Photoacoustic imaging in biomedicine," Review of Scientific Instruments, Vol. 77, No. 22.        Google Scholar

58. Xu, M. and L. V. Wang, "Universal back-projection algorithm for photoacoustic computed tomography," Physical Review E, Vol. 71, 016706, 2005.        Google Scholar

59. Finch, D., M. Haltmeier, and Rakesh, "Inversion of spherical means and the wave equation in even dimensions," SIAM, Vol. 68, No. 2, 392-412, 2007.        Google Scholar

60. Burgholzer, P., G. J. Matt, M. Haltmeier, and G. N. Paltauf, "Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface," Physical Review E, Vol. 75, 046706, 2007.        Google Scholar

61. Xu, Y. and L. V. Wang, "Time reversal and its application to tomography with diffracting sources," Physical Review Letters, Vol. 92, 033902, 2004.        Google Scholar

62. Beard, P., "Biomedical photoacoustic imaging," Interface Focus, Vol. 1, 602-631, Aug. 2011.        Google Scholar

63. Yulia, H., K. Peter, and N. Linh, "Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media," Inverse Problems, Vol. 24, 055006, 2008.        Google Scholar

64. Treeby, B. E. and B. T. Cox, "k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields," Journal of Biomedical Optics, Vol. 15, 021314, Mar.-Apr. 2010.        Google Scholar

65. Xu, M. H. and L. V. Wang, "Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction," Physical Review E, Vol. 67, 15, May 2003.        Google Scholar

66. Wang, K., R. Su, A. A. Oraevsky, and M. A. Anastasio, "Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography," Physics in Medicine and Biology, Vol. 57, 5399-5423, Sep. 2012.        Google Scholar

67. Wang, K., S. A. Ermilov, R. Su, H. P. Brecht, A. A. Oraevsky, and M. A. Anastasio, "An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography," IEEE Transactions on Medical Imaging, Vol. 30, 203-214, Feb. 2011.        Google Scholar

68. Xu, Y., L. V. Wang, G. Ambartsoumian, and P. Kuchment, "Reconstructions in limited-view thermoacoustic tomography," Medical Physics, Vol. 31, 724-733, Apr. 2004.        Google Scholar

69. Guo, Z., C. Li, L. Song, and L. V. Wang, "Compressed sensing in photoacoustic tomography in vivo," Journal of Biomedical Optics, Vol. 15, 021311, 2010.        Google Scholar

70. Huang, B., J. Xia, K. Maslov, and L. V.Wang, "Improving limited-view photoacoustic tomography with an acoustic reflector," Journal of Biomedical Optics, Vol. 18, 110505, 2013.        Google Scholar

71. Provost, J. and F. Lesage, "The application of compressed sensing for photo-acoustic tomography," IEEE Transactions on Medical Imaging, Vol. 28, 585-594, Apr. 2009.        Google Scholar

72. Wang, Y., T. N. Erpelding, L. Jankovic, Z. Guo, J.-L. Robert, G. David, and L. V. Wang, "In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe," Journal of Biomedical Optics, Vol. 17, 061208-1, 2012.        Google Scholar

73. Zhang, E., J. Laufer, and P. Beard, "Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues," Appl. Opt., Vol. 47, 561-577, 2008.        Google Scholar

74. Laufer, J., E. Zhang, G. Raivich, and P. Beard, "Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner," Appl. Opt., Vol. 48, D299-D306, 2009.        Google Scholar

75. Laufer, J., F. Norris, J. Cleary, E. Zhang, B. Treeby, B. Cox, P. Johnson, P. Scambler, M. Lythgoe, and P. Beard, "In vivo photoacoustic imaging of mouse embryos," Journal of Biomedical Optics, Vol. 17, 061220-1, 2012.        Google Scholar

76. Xia, J., Z. Guo, K. Maslov, A. Aguirre, Q. Zhu, C. Percival, and L. V. Wang, "Three-dimensional photoacoustic tomography based on the focal-line concept," Journal of Biomedical Optics, Vol. 16, 090505, 2011.        Google Scholar

77. Buehler, A., E. Herzog, D. Razansky, and V. Ntziachristos, "Video rate optoacoustic tomography of mouse kidney perfusion," Opt. Lett.,, Vol. 35, 2475-2477, 2010.        Google Scholar

78. Xia, J., M. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, and L. V. Wang, "Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo," Journal of Biomedical Optics, Vol. 17, 050506, 2012.        Google Scholar

79. Xia, J., W. Chen, K. Maslov, M. A. Anastasio, and L. V. Wang, "Retrospective respiration-gated whole-body photoacoustic computed tomography of mice," Journal of Biomedical Optics, Vol. 19, 016003, 2014.        Google Scholar

80. Kruger, R. A., W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, "Thermoacoustic molecular imaging of small animals," Molecular Imaging, Vol. 2, 113-123, 2003.        Google Scholar

81. Brecht, H.-P., R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, and A. A. Oraevsky, "Whole-body three-dimensional optoacoustic tomography system for small animals," Journal of Biomedical Optics, Vol. 14, 064007-8, 2009.        Google Scholar

82. Kruger, R., D. Reinecke, G. Kruger, M. Thornton, P. Picot, T. Morgan, K. Stantz, and C. Mistretta, "HYPR-spectral photoacoustic CT for preclinical imaging," Proceedings of SPIE, Vol. 7177, 71770F, 2009.        Google Scholar

83. Kruger, R. A., C. M. Kuzmiak, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and D. Steed, "Dedicated 3D photoacoustic breast imaging," Medical Physics, Vol. 40, No. 11, 113301, 2013.        Google Scholar

84. Xu, M., "Analysis of spatial resolution in photoacoustic tomography," Photoacoustic Imaging and Spectroscopy, 47-60, CRC Press, 2009.        Google Scholar

85. Yao, J. J. and L. H. V. Wang, "Photoacoustic microscopy," Laser & Photonics Reviews, Vol. 7, 758-778, Sep. 2013.        Google Scholar

86. Hu, S., K. Maslov, and L. V. Wang, "Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed," Optics Letters, Vol. 36, 1134-1136, Apr. 1, 2011.        Google Scholar

87. Maslov, K., H. F. Zhang, S. Hu, and L. V. Wang, "Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries," Optics Letters, Vol. 33, 929-931, May 1, 2008.        Google Scholar

88. Maslov, K., G. Stoica, and L. H. V. Wang, "In vivo dark-field reflection-mode photoacoustic microscopy," Optics Letters, Vol. 30, 625-627, Mar. 15, 2005.        Google Scholar

89. Yang, J. M., C. Favazza, R. M. Chen, J. J. Yao, X. Cai, K. Maslov, Q. F. Zhou, K. K. Shung, and L. H. V. Wang, "Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo," Nature Medicine, Vol. 18, 1297, Aug. 2012.        Google Scholar

90. Hajireza, P., W. Shi, and R. Zemp, "Label-free in vivo GRIN-lens optical resolution photoacoustic micro-endoscopy," Laser Physics Letters, Vol. 10, No. 5, 055603, May 2013.        Google Scholar

91. Yang, J. M., R. M. Chen, C. Favazza, J. J. Yao, C. Y. Li, Z. L. Hu, Q. F. Zhou, K. K. Shung, and L. V. Wang, "A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy," Optics Express, Vol. 20, 23944-23953, Oct. 8, 2012.        Google Scholar

92. Shao, P., W. Shi, P. Hajireza, and R. J. Zemp, "Integrated micro-endoscopy system for simultaneous fluorescence and optical-resolution photoacoustic imaging," Journal of Biomedical Optics, Vol. 17, 076024, Jul. 2012.        Google Scholar

93. Yang, J. M., K. Maslov, H. C. Yang, Q. F. Zhou, K. K. Shung, and L. H. V. Wang, "Photoacoustic endoscopy," Optics Letters, Vol. 34, 1591-1593, May 15, 2009.        Google Scholar

94. Xing, W. X., L. D. Wang, K. Maslov, and L. H. V. Wang, "Integrated optical- and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle," Optics Letters, Vol. 38, 52-54, Jan. 1, 2013.        Google Scholar

95. Xu, X., H. Liu, and L. V. Wang, "Time-reversed ultrasonically encoded optical focusing into scattering media," Nat. Photon., Vol. 5, 154-157, 2011.        Google Scholar

96. Judkewitz, B., Y. M. Wang, R. Horstmeyer, A. Mathy, and C. Yang, "Speckle-scale focusing in the diffusive regime with time reversal of variance-encoded light (TROVE)," Nat. Photon., Vol. 7, 300-305, 2013.        Google Scholar

97. Li, L., R. J. Zemp, G. Lungu, G. Stoica, and L. V. Wang, "Photoacoustic imaging of lacZ gene expression in vivo," Journal of Biomedical Optics, Vol. 12, 020504-3, 2007.        Google Scholar

98. Kruger, A., V. Schirrmacher, and R. Khokha, "The bacterial lacZ gene: An important tool for metastasis research and evaluation if new cancer therapies," Cancer and Metastasis Reviews, Vol. 17, 285-294, Sep. 1, 1998.        Google Scholar

99. Cai, X., L. Li, A. Krumholz, Z. J. Guo, T. N. Erpelding, C. Zhang, Y. Zhang, Y. N. Xi, and L. H. V. Wang, "Multi-scale molecular photoacoustic tomography of gene expression," PLOS ONE, Vol. 7, No. 8, e43999, Aug. 27, 2012.        Google Scholar

100. Xia, J., G. Li, L. Wang, M. Nasiriavanaki, K. Maslov, J. A. Engelbach, J. R. Garbow, and L. V. Wang, "Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy," Optics Letters, Vol. 38, 5236-5239, Dec. 15, 2013.        Google Scholar

101. Huang, B., M. Bates, and X. W. Zhuang, "Super-resolution fluorescence microscopy," Annual Review of Biochemistry, Vol. 78, 993-1016, 2009.        Google Scholar

102. Yao, J., L. Wang, C. Li, C. Zhang, and L. V. Wang, "Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging," Physical Review Letters, Vol. 112, 014302, 2014.        Google Scholar

103. Nedosekin, D. A., E. I. Galanzha, E. Dervishi, A. S. Biris, and V. P. Zharov, "Super-resolution nonlinear photothermal microscopy," Small, Vol. 10, 135-142, Jan. 15, 2014.        Google Scholar

104. Conkey, D. B., A. M. Caravaca-Aguirre, J. D. Dove, H. Ju, T. W. Murray, and R. Piestun, "Super-resolution photoacoustic imaging through a scattering wall,", arXiv:1310.5736, 2013.        Google Scholar

105. Lai, P., L. Wang, J. W. Tay, and L. Wang, "Nonlinear photoacoustic wavefront shaping (PAWS) for single speckle-grain optical focusing in scattering media,", arXiv:1402.0816, 2014.        Google Scholar

106. Hanahan, D. and R. A. Weinberg, "Hallmarks of cancer: The next generation," Cell, Vol. 144, 646-674, Mar. 4, 2011.        Google Scholar

107. Zhang, H. F., K. Maslov, M. Sivaramakrishnan, G. Stoica, and L. H. V. Wang, "Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy," Applied Physics Letters, Vol. 90, 053901, Jan. 29, 2007.        Google Scholar

108. Maslov, K., H. F. Zhang, and L. V. Wang, "Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo," Inverse Problems, Vol. 23, S113-S122, Dec. 2007.        Google Scholar

109. Hu, S., K. Maslov, and L. H. V. Wang, "Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy," Optics Express, Vol. 17, 7688-7693, Apr. 27, 2009.        Google Scholar

110. Hu, S., K. Maslov, and L. H. V. Wang, "In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy," Medical Physics, Vol. 36, 2320-2323, Jun. 2009.        Google Scholar

111. Hu, S., B. Rao, K. Maslov, and L. V. Wang, "Label-free photoacoustic ophthalmic angiography," Optics Letters, Vol. 35, 1-3, Jan. 1, 2010.        Google Scholar

112. Wang, Y., K. Maslov, and L. H. V. Wang, "Spectrally encoded photoacoustic microscopy using a digital mirror device," Journal of Biomedical Optics, Vol. 17, 066020, Jun. 2012.        Google Scholar

113. Ranasinghesagara, J. C. and R. J. Zemp, "Combined photoacoustic and oblique-incidence diffuse reflectance system for quantitative photoacoustic imaging in turbid media," Journal of Biomedical Optics, Vol. 15, 046016, Jul.-Aug. 2010.        Google Scholar

114. Bauer, A. Q., R. E. Nothdurft, T. N. Erpelding, L. H. V. Wang, and J. P. Culver, "Quantitative photoacoustic imaging: Correcting for heterogeneous light fluence distributions using diffuse optical tomography," Journal of Biomedical Optics, Vol. 16, 096016, Sep. 2011.        Google Scholar

115. Guo, Z., C. Favazza, A. Garcia-Uribe, and L. V. Wang, "Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime," Journal of Biomedical Optics, Vol. 17, 066011-1, 2012.        Google Scholar

116. Guo, Z., S. Hu, and L. V. Wang, "Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue," Opt. Lett., Vol. 35, 2067-2069, 2010.        Google Scholar

117. Xia, J., A. Danielli, Y. Liu, L. Wang, K. Maslov, and L. V. Wang, "Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals," Opt. Lett., Vol. 38, 2800-2803, 2013.        Google Scholar

118. Wang, R. K. and S. Hurst, "Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 μm wavelength," Optics Express, Vol. 15, 11402-11412, Sep. 3, 2007.        Google Scholar

119. An, L. and R. K. Wang, "In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography," Optics Express, Vol. 16, 11438-11452, Jul. 21, 2008.        Google Scholar

120. Cobbold, R. S. C., Foundations of Biomedical Ultrasound, Oxford University Press, Oxford, New York, 2007.

121. Fang, H., K. Maslov, and L. V. Wang, "Photoacoustic Doppler flow measurement in optically scattering media," Applied Physics Letters, Vol. 91, 264103, Dec. 24, 2007.        Google Scholar

122. Sheinfeld, A., S. Gilead, and A. Eyal, "Time-resolved photoacoustic Doppler characterization of flow using pulsed excitation," Photons Plus Ultrasound: Imaging and Sensing 2010, 75643N-6, San Francisco, California, USA, 2010.        Google Scholar

123. Fang, H. and L. H. V. Wang, "M-mode photoacoustic particle flow imaging," Optics Letters, Vol. 34, 671-673, Mar. 1, 2009.        Google Scholar

124. Yao, J., K. I. Maslov, Y. Shi, L. A. Taber, and L. V. Wang, "In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth," Optics Letters, Vol. 35, 1419-1221, May 1, 2010.        Google Scholar

125. Yao, J. J. and L. H. V.Wang, "Transverse flow imaging based on photoacoustic Doppler bandwidth broadening," Journal of Biomedical Optics, Vol. 15, 021304, Mar.-Apr. 2010.        Google Scholar

126. Yao, J., K. I. Maslov, and L. V. Wang, "In vivo photoacoustic tomography of total blood flow and potential imaging of cancer angiogenesis and hypermetabolism," Technology in Cancer Research & Treatment, 301-307, Mar. 15, 2012.        Google Scholar

127. Brunker, J. and P. Beard, "Pulsed photoacoustic Doppler °owmetry using a cross correlation method," Photons Plus Ultrasound: Imaging and Sensing 2010, 756426, San Francisco, 2010.        Google Scholar

128. Sheinfeld , A. and A. Eyal, "Photoacoustic thermal diffusion flowmetry," Biomedical Optics Express, Vol. 3, 800-813, Apr. 1, 2012.        Google Scholar

129. Wei, C., S. W. Huang, C. R. C. Wang, and P. C. Li, "Photoacoustic flow measurements based on wash-in analysis of gold nanorods," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, Vol. 54, 1131-1141, Jun. 2007.        Google Scholar

130. Wei, C. W., C. K. Liao, H. C. Tseng, Y. P. Lin, C. C. Chen, and P. C. Li, "Photoacoustic flow measurements with gold nanoparticles," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, Vol. 53, 1955-1959, Oct. 2006.        Google Scholar

131. Song, L., K. Maslov, and L. V.Wang, "Section-illumination photoacoustic microscopy for dynamic 3D imaging of microcirculation in vivo," Optics Letters, Vol. 35, 1482-1484, May 1, 2010.        Google Scholar

132. Zhang, R., J. Yao, K. I. Maslov, and L. V. Wang, "Structured-illumination photoacoustic Doppler flowmetry of axial flow in homogeneous scattering media," Applied Physics Letters, Vol. 103, 94101, Aug. 26, 2013.        Google Scholar

133. Wang, L., J. Yao, K. I. Maslov, W. Xing, and L. V. Wang, "Ultrasound-heated photoacoustic flowmetry," Journal of Biomedical Optics, Vol. 18, 117003, Nov. 1, 2013.        Google Scholar

134. Hanahan, D. and R. A. Weinberg, "The hallmarks of cancer," Cell, Vol. 100, 57-70, Jan. 7, 2000.        Google Scholar

135. Wang, L. V., "Prospects of photoacoustic tomography," Medical Physics, Vol. 35, 5758-5767, Dec. 2008.        Google Scholar

136. Liu, T., Q. Wei, J. Wang, S. L. Jiao, and H. F. Zhang, "Combined photoacoustic microscopy and optical coherence tomography can measure metabolic rate of oxygen," Biomedical Optics Express, Vol. 2, 1359-1365, May 1, 2011.        Google Scholar

137. Jiang, Y., A. Forbrich, T. Harrison, and R. J. Zemp, "Blood oxygen flux estimation with a combined photoacoustic and high-frequency ultrasound microscopy system: A phantom study," Journal of Biomedical Optics, Vol. 17, 036012, 2012.        Google Scholar

138. Wang, L. D., K. Maslov, and L. H. V. Wang, "Single-cell label-free photoacoustic flowoxigraphy in vivo," Proceedings of the National Academy of Sciences of the United States of America, Vol. 110, 5759-5764, Apr. 9, 2013.        Google Scholar

139. MacKenzie, H. A., H. S. Ashton, S. Spiers, Y. C. Shen, S. S. Freeborn, J. Hannigan, J. Lindberg, and P. Rae, "Advances in photoacoustic noninvasive glucose testing," Clinical Chemistry, Vol. 45, 1587-1595, Sep. 1999.        Google Scholar

140. Gao, L., C. Zhang, C. Y. Li, and L. H. V. Wang, "Intracellular temperature mapping with fluorescence-assisted photoacoustic-thermometry," Applied Physics Letters, Vol. 102, 193705, May 13, 2013.        Google Scholar

141. Wang, H. W., N. Chai, P. Wang, S. Hu, W. Dou, D. Umulis, L. H. V. Wang, M. Sturek, R. Lucht, and J. X. Cheng, "Label-free bond-selective imaging by listening to vibrationally excited molecules," Physical Review Letters, Vol. 106, 238106, Jun. 10, 2011.        Google Scholar

142. Yakovlev, V. V., H. F. Zhang, G. D. Noojin, M. L. Denton, R. J. Thomas, and M. O. Scully, "Stimulated Raman photoacoustic imaging," Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, 20335-20339, Nov. 2010.        Google Scholar

143. Wang, Y. and L. V. Wang, "Forster resonance energy transfer photoacoustic microscopy," Journal of Biomedical Optics, Vol. 17, 086007, 2012.        Google Scholar

144. Wang, Y., J. Xia, and L. V. Wang, "Deep-tissue photoacoustic tomography of Forster resonance energy transfer," Journal of Biomedical Optics, Vol. 18, 101316, 2013.        Google Scholar

145. Danielli, A., C. P. Favazza, K. Maslov, and L. V. Wang, "Picosecond absorption relaxation measured with nanosecond laser photoacoustics," Applied Physics Letters, Vol. 97, 163701, Oct. 18, 2010.        Google Scholar

146. Danielli, A., C. P. Favazza, K. Maslov, and L. H. V. Wang, "Single-wavelength functional photoacoustic microscopy in biological tissue," Optics Letters, Vol. 36, 769-771, Mar. 1, 2011.        Google Scholar

147. Hu, S., K. Maslov, P. Yan, J.-M. Lee, and L. V.Wang, "Dichroism optical-resolution photoacoustic microscopy," Photons Plus Ultrasound: Imaging and Sensing 2012, 82233T-4, San Francisco, California, USA, 2012.        Google Scholar

148. Xia, J., I. Pelivanov, C. Wei, X. Hu, X. Gao, and M. O'Donnell, "Suppression of background signal in magnetomotive photoacoustic imaging of magnetic microspheres mimicking targeted cells," Journal of Biomedical Optics, Vol. 17, 061224, 2012.        Google Scholar

149. Ray, A., J. R. Rajian, Y.-E. K. Lee, X. Wang, and R. Kopelman, "Lifetime-based photoacoustic oxygen sensing in vivo," Journal of Biomedical Optics, Vol. 17, 057004, 2012.        Google Scholar

150. Chatni, M. R., J. J. Yao, A. Danielli, C. P. Favazza, K. I. Maslov, and L. H. V. Wang, "Functional photoacoustic microscopy of pH," Journal of Biomedical Optics, Vol. 16, 100503, Oct. 2011.        Google Scholar

151. Ashkenazi, S., S. W. Huang, T. Horvath, Y. E. Koo, and R. Kopelman, "Photoacoustic probing of fluorophore excited state lifetime with application to oxygen sensing," Journal of Biomedical Optics, Vol. 13, 034023, May-Jun. 2008.        Google Scholar

152. Ashkenazi, S., "Photoacoustic lifetime imaging of dissolved oxygen using methylene blue," Journal of Biomedical Optics, Vol. 15, 040501, Jul.-Aug. 2010.        Google Scholar

153. Wilson, K. E., T. Y. Wang, and J. K. Willmann, "Acoustic and photoacoustic molecular imaging of cancer," Journal of Nuclear Medicine, Vol. 54, 1851-1854, Nov. 1, 2013.        Google Scholar

154. De la Zerda, A., J. W. Kim, E. I. Galanzha, S. S. Gambhir, and V. P. Zharov, "Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics," Contrast Media & Molecular Imaging, Vol. 6, 346-369, Sep.-Oct. 2011.        Google Scholar

155. Yang, X. M., E. W. Stein, S. Ashkenazi, and L. H. V. Wang, "Nanoparticles for photoacoustic imaging," Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, Vol. 1, 360-368, Jul.-Aug. 2009.        Google Scholar

156. Luke, G. P., D. Yeager, and S. Y. Emelianov, "Biomedical applications of photoacoustic imaging with exogenous contrast agents," Annals of Biomedical Engineering, Vol. 40, 422-437, Feb. 2012.        Google Scholar

157. Kim, C., C. Favazza, and L. H. V. Wang, "In vivo photoacoustic tomography of chemicals: High-resolution functional and molecular optical imaging at new depths," Chemical Reviews, Vol. 110, 2756-2782, May 2010.        Google Scholar

158. Kircher, M. F., A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. M. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff E. C. Holland, and S. S. Gambhir, "A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle," Nature Medicine, Vol. 18, 829-U235, May 2012.        Google Scholar

159. Ray, A., X. D. Wang, Y. E. K. Lee, H. J. Hah, G. Kim, T. Chen, D. A. Orringer, O. Sagher, X. J. Liu, and R. Kopelman, "Targeted blue nanoparticles as photoacoustic contrast agent for brain tumor delineation," Nano Research, Vol. 4, 1163-1173, Nov. 2011.        Google Scholar

160. Razansky, D., J. Baeten, and V. Ntziachristos, "Sensitivity of molecular target detection by multispectral optoacoustic tomography (MSOT)," Medical Physics, Vol. 36, 939-945, Mar. 2009.        Google Scholar

161. Laufer, J., A. Jathoul, M. Pule, and P. Beard, "In vitro characterization of genetically expressed absorbing proteins using photoacoustic spectroscopy," Biomedical Optics Express, Vol. 4, 2477-2490, Nov. 1, 2013.        Google Scholar

162. Krumholz, A., D. M. Shcherbakova, J. Xia, L. V. Wang, and V. V. Verkhusha, "Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins," Sci. Rep., Vol. 4, 3939, 2014.        Google Scholar

163. Laufer, J., A. Jathoul, P. Johnson, E. Zhang, M. Lythgoe, R. B. Pedley, M. Pule, and P. Beard, "In vivo photoacoustic imaging of tyrosinase expressing tumours in mice," Photons Plus Ultrasound: Imaging and Sensing 2012, 82230M-5, San Francisco, California, USA, 2012.        Google Scholar

164. Qin, C. X., K. Cheng, K. Chen, X. Hu, Y. Liu, X. L. Lan, Y. X. Zhang, H. G. Liu, Y. D. Xu, L. H. Bu, X. H. Su, X. H. Zhu, S. X. Meng, and Z. Cheng, "Tyrosinase as a multifunctional reporter gene for photoacoustic/MRI/PET triple modality molecular imaging," Scientific Reports, Vol. 3, 1490, Mar. 19, 2013.        Google Scholar

165. Bell, M. A. L., X. Guo, D. Y. Song, and E. M. Boctor, "Photoacoustic imaging of prostate brachytherapy seeds with transurethral light delivery," Photons Plus Ultrasound: Imaging and Sensing 2014, 89430N-89430N-6, San Francisco, California, USA, 2014.        Google Scholar

166. Cox, B., J. G. Laufer, S. R. Arridge, and P. C. Beard, "Quantitative spectroscopic photoacoustic imaging: A review," Journal of Biomedical Optics, Vol. 17, 061202-1, 2012.        Google Scholar