1. Chu, L. J., "Physical limitations of omni-directional antennas," J. Appl. Phys., Vol. 19, 1163-1175, Dec. 1948. Google Scholar
2. Harrington, R. F., "Effect of antenna size on gain, bandwidth, and efficiency," J. Res. National Bureau Standards --- D. Radio Propagation, Vol. 64D, No. 1, Jan. 1960. Google Scholar
3. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 5, 672-676, May 1996. Google Scholar
4. Psychoudakis, D., J. L. Volakis, Z. N. Wing, S. K. Pillai, and J. W. Halloran, "Enhancing UHF antenna functionality through dielectric inclusions and texturization," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 2, 317-329, Feb. 2006. Google Scholar
5. Lee, M., B. A. Kramer, C. Chen, and J. L. Volakis, "Distributed lumped loads and lossy transmission line model for wideband spiral antenna miniaturization and characterization," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 10, 2671-2678, Oct. 2007. Google Scholar
6. Chi, P., R.Waterhouse, and T. Itoh, "Antenna miniaturization using slow wave enhancement factor from loaded transmission line," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 48-57, Jan. 2011. Google Scholar
7. Azadegan, R. and K. Sarabandi, "Bandwidth enhancement of miniaturized slot antennas using folded, complementary, and self-complementary realizations," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 9, 2435-2444, Sep. 2007. Google Scholar
8. Erentok, A. and R. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 691-707, Mar. 2008. Google Scholar
9. Jin, P. and R. Ziolkowski, "Broadband, efficient, electrically small metamaterial-inspired antennas facilitated by active near-field resonant parasitic elements," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 318-327, Feb. 2010. Google Scholar
10. Ziolkowski, R., "Efficient electrically small antenna facilitated by a near-field resonant parasitic," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 581-584, 2008. Google Scholar
11. Bilotti, F., A. Alu, and L. Vegni, "Design of miniaturized metamaterial patch antennas with μ-negative loading," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1640-1647, Jun. 2008. Google Scholar
12. Qureshi, F., M. Antoniades, and G. V. Eleftheriades, "A compact and low-profile metamaterial ring antenna with vertical polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 333-336, 2005. Google Scholar
13. Liu, Q., P. S. Hall, and A. L. Borja, "Efficiency of electrically small dipole antennas loaded with left-handed transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3009-3017, Oct. 2009. Google Scholar
14. Lai, A. and T. Itoh, "Composite right/left-handed transmission line metamaterials," IEEE Microwave Magazine, 34-50, Sep. 2004. Google Scholar
15. Caloz, C., T. Itoh, and A. Rennings, "CRLH metamaterial leaky-wave and resonant antennas," IEEE Antennas and Propagation Magazine, Vol. 50, No. 5, 25-38, Oct. 2008. Google Scholar
16. Sievenpiper, D., L. Zhang, R. F. Jimenez Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, Nov. 1999. Google Scholar
17. Folayan, O. and R. J. Langley, "Wideband reduced size electromagnetic bandgap structure," IET Electronics Letters, Vol. 41, 1099-1100, Sep. 2005. Google Scholar
18. Foroozesh, A. and L. Shafai, "Investigation into the application of AMCs to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 4-20, Jan. 2011. Google Scholar
19. Cook, B. S. and A. Shamim, "Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate," EEE Antennas and Wireless Propagation Letters, Vol. 12, 76-79, 2013. Google Scholar
20. Liu, H., K. L. Ford, and R. J. Langley, "Miniaturised artificial magnetic conductor design using lumped reactive components," IET Electronics Letters, Vol. 45, No. 6, 294-295, 2009. Google Scholar
21. Liu, H., K. L. Ford, and R. J. Langley, "Design methodology for a miniaturized frequency selective surface using lumped reactive components," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2732-2738, Sep. 2009. Google Scholar
22. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory and Technology, Vol. 47, No. 11, 2075-2084, Nov. 1999. Google Scholar
23. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple SRRs for the realization of miniaturized metamaterial samples," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2258-2267, Aug. 2007. Google Scholar
24. Martin, F., J. Bonache, F. Falcone, M. Sorolla, and R. Marques, "Split-ring resonator-based left-handed coplanar waveguide," Applied Physics Letters, Vol. 83, No. 22, Dec. 1, 2003. Google Scholar
25. Costa, F., O. Luukkonen, C. R. Simovski, A. Monorchio, S. A. Tretyakov, and P. M. de Maagt, "TE surface wave resonances on high impedance surface based antennas: Analysis and modeling," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3588-3596, Oct. 2011. Google Scholar
26. Zhu, N. and R. Ziolkowski, "Active metamaterial-inspired broad-bandwidth, efficient, electrically small antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1582-1585, 2011. Google Scholar
27. Ziolkowski, R., P. Jin, J. A. Nielsen, M. H. Tanielian, and C. L. Holloway, "Experimental verification of Z antennas at UHF frequencies," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1329-1333, 2009. Google Scholar
28. Zhu, N. and R. Ziolkowski, "Design and measurements of an electrically small, broad bandwidth, non-Foster circuit-augmented protractor antenna," Applied Physics Letters, Vol. 101, No. 2, 24107-24110, Jul. 2012. Google Scholar
29. Jin, P. and R. Ziolkowski, "Low-Q, electrically small, e±cient near-field resonant parasitic antennas," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2548-2563, Sep. 2009. Google Scholar
30. Vasundara, V. V., H. Wang, I. K. Kim, and S. Weiss, "SRR-loaded small dipole antenna with electromagnetic bandgap ground plane," IEEE International Symposium on Antennas and Propagation 2011, 1040-1043, Jul. 2011. Google Scholar
31. Best, S. R., "The radiation properties of electrically small folded helix antennas," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 4, 953-960, Apr. 2004. Google Scholar
32. Johnston, R. H. and J. G. McRory, "An improved small antenna radiation-efficiency measurement method," IEEE Antenna and Propagation Magazine, Vol. 40, No. 5, 40-48, Oct. 1998. Google Scholar