1. Frye, R., K. Liu, and R. Melville, "Second-harmonic nonlinearities in RF silicon integrated passive devices," 2013 IEEE 63rd Electronic Components and Technology Conference (ECTC), 1667-1674, 2013.
doi:10.1109/ECTC.2013.6575797 Google Scholar
2. Rong, B., J. N. Burghartz, L. K. Nanver, et al. "Surface-passivated high-resistivity silicon substrates for RFICs," IEEE Electron Device Letters, Vol. 25, No. 4, 176-178, 2004.
doi:10.1109/LED.2004.826295 Google Scholar
3. Gamble, H. S., B. M. Armstrong, S. J. N. Mitchell, et al. "Low-loss CPW lines on surface stabilized high-resistivity silicon," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 10, 395-397, 1999.
doi:10.1109/75.798027 Google Scholar
4. Zoschke, K., T. Fischer, M. Topper, et al. "Wafer level processing of integrated passive components using polyimide or polybenzoxazole/copper multilayer technology," IEEE Transactions on Advanced Packaging, Vol. 33, No. 2, 398-407, 2010.
doi:10.1109/TADVP.2009.2037729 Google Scholar
5. Chen, C. H., C. S. Shih, T. S. Horng, and S.-M. Wu, "Very miniature dual-band and dual-mode bandpass filter designs on an integrated passive device chip," Progress In Electromagnetics Research, Vol. 119, 461-476, 2011.
doi:10.2528/PIER11080105 Google Scholar
6. Wu, S. M., Y. C. Tai, C. C. Lai, et al. "Physical model extracting of spiral inductor on glass substrate, electronics packaging technology conference," 10th Electronics Packaging Technology Conference, EPTC 2008, 1028-1033, 2008.
doi:10.1109/EPTC.2008.4763565 Google Scholar
7. Chong, K., Y. H. Xie, K. W. Yu, et al. "High-performance inductors integrated on porous silicon," IEEE Electron Device Letters, Vol. 26, No. 2, 93-95, 2005.
doi:10.1109/LED.2004.840546 Google Scholar
8. Yook, J. M., D. Kim, and J. C. Kim, "High-Q trenched spiral inductors and low-loss low pass filters using through silicon via processes," Japanese Journal of Applied Physics, Vol. 53, No. 4S, 04EE11, 2014.
doi:10.7567/JJAP.53.04EE11 Google Scholar
9. Hongrui, J., W. Ye, J. L. A. Yeh, and N. C. Tien, "On-chip spiral inductors suspended over deep copper-lined cavities," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 12, 2415-2423, 2000.
doi:10.1109/22.898992 Google Scholar
10. Gu, , L. and X. Li, "Concave-suspended high-Q solenoid inductors with an RFIC-compatible bulk-micromachining technology," IEEE Transactions on Electron Devices, Vol. 54, No. 4, 882-885, 2007.
doi:10.1109/TED.2007.892362 Google Scholar
11. Wang, T., M. Han, and L. Luo, "A folded slot antenna with pre-etched cavity and BCB support membrane on silicon wafer," Progress In Electromagnetics Research Letters, Vol. 39, 97-102, 2013.
doi:10.2528/PIERL13032001 Google Scholar
12. Yue, C. P., C. Ryu, J. Lau, et al. "A physical model for planar spiral inductors on silicon," IEEE International Electron Devices Meeting, IEDM'96, 155-158, 1996.
doi:10.1109/IEDM.1996.553144 Google Scholar
13. Xiao, H., K. J. Chen, and P. C. H. Chan, "Silicon-based high-Q inductors incorporating electroplated copper and low-K BCB dielectric," IEEE Electron Device Letters, Vol. 23, No. 9, 520-522, Sep. 2002.
doi:10.1109/LED.2002.802652 Google Scholar
14. Khoo, Y. M., T. G. Lim, S. W. Ho, et al. "Enhancement of silicon-based inductor Q-factor using polymer cavity," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 2, No. 12, 1973-1979, 2012.
doi:10.1109/TCPMT.2012.2204879 Google Scholar