1. Bott, R., "On some recent interactions between mathematics and physics," Canad. Math. Bull., Vol. 28, No. 2, 129-164, 1985.
doi:10.4153/CMB-1985-016-3 Google Scholar
2. Gockeler, M. and T. Schuker, Differential Geometry, Gauge Theories, and Gravity, Cambridge University Press, 1987.
doi:10.1017/CBO9780511628818
3. Burgess, M., Classical Covariant Fields, Cambridge University Press, 2002.
doi:10.1017/CBO9780511535055
4. Zee, A., Quantum Field Theory in a Nutshell, Princeton University Press, Princeton, NJ, 2003.
5. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," J. Math. Phys., Vol. 40, No. 1, 169-187, 1999.
doi:10.1063/1.532767 Google Scholar
6. Teixeira, F. L., "Differential forms in lattice field theories: An overview," ISRN Math. Phys., Vol. 2013, 487270, 2013. Google Scholar
7. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of a discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, No. 3, 1494-1497, 1999.
doi:10.1109/20.767250 Google Scholar
8. Misner, C. W., K. S. Thorne, and J. A. Wheeler, Gravitation, Freeman and Co., New York, 1973.
9. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, 676-696, 1982. Google Scholar
10. Schenberg, M., "Electromagnetism and gravitation," Braz. J. Phys., Vol. 1, 91-122, 1971. Google Scholar
11. Warnick, K. F. and P. Russer, "Two, three, and four-dimensional electromagnetics using differential forms," Turk. J. Elec. Engin., Vol. 14, No. 1, 153-172, 2006. Google Scholar
12. Gross, P. W. and P. R. Kotiuga, "Data structures for geometric and topological aspects of finite element algorithms," Progress In Electromagnetics Research, Vol. 32, 151-169, 2001.
doi:10.2528/PIER00080106 Google Scholar
13. Teixeira, F. L., "Geometrical aspects of the simplicial discretization of Maxwell’s equations," Progress In Electromagnetics Research, Vol. 32, 171-188, 2001.
doi:10.2528/PIER00080107 Google Scholar
14. Tonti, E., "Finite formulation of the electromagnetic field," Progress In Electromagnetics Research, Vol. 32, 1-44, 2001.
doi:10.2528/PIER00080101 Google Scholar
15. Gross, P. W. and P. R. Kotiuga, Electromagnetic Theory and Computation: A Topological Approach, Cambridge University Press, 2004.
doi:10.1017/CBO9780511756337.002
16. Adams, D. H., "R-torsion and linking numbers from simplicial Abelian gauge theories," High Energy Physics — Theory, 9612009, 1996. Google Scholar
17. Sen, S., S. Sen, J. C. Sexton, and D. H. Adams, "Geometric discretization scheme applied to the Abelian Chern-Simons theory," Phys. Rev. E, Vol. 61, No. 3, 3174-3185, 2000.
doi:10.1103/PhysRevE.61.3174 Google Scholar
18. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 65-87, 2001.
doi:10.2528/PIER00080103 Google Scholar
19. Schuhmann, R. and T. Weiland, "Conservation of discrete energy and related laws in the finite integration technique," Progress In Electromagnetics Research, Vol. 32, 301-316, 2001.
doi:10.2528/PIER00080112 Google Scholar
20. He, B. and F. L. Teixeira, "On the degrees of freedom of lattice electrodynamics," Phys. Lett. A, Vol. 336, No. 1, 1-7, 2005.
doi:10.1016/j.physleta.2005.01.001 Google Scholar
21. Kheyfets, A. and W. A. Miller, "The boundary of a boundary in field theories and the issue of austerity of the laws of physics," J. Math. Phys., Vol. 32, No. 11, 3168-3175, 1991.
doi:10.1063/1.529519 Google Scholar
22. Guth, A. H., "Existence proof of a nonconfining phase in four-dimensional U(1) lattice field theory," Physical Review D, Vol. 21, No. 8, 2291-2307, 1980.
doi:10.1103/PhysRevD.21.2291 Google Scholar
23. Whitney, H., Geometric Integration Theory, Princeton University Press, Princeton, NJ , 1957.
24. Bossavit, A., "Generalized finite differences’ in computational electromagnetics," Progress In Electromagnetics Research, Vol. 32, 45-64, 2001.
doi:10.2528/PIER00080102 Google Scholar
25. He, B. and F. L. Teixeira, "Geometric finite element discretization of Maxwell equations in primal and dual spaces," Phys. Lett. A, Vol. 349, No. 1–4, 1-14, 2006.
doi:10.1016/j.physleta.2005.09.002 Google Scholar
26. Schwarz, A. S., Topology for Physicists, Springer-Verlag, New York, 1994.
doi:10.1007/978-3-662-02998-5_1
27. Bossavit, A., "Whitney forms: A new class of finite elements for three-dimensional computations in electromagnetics," IEE Proc. A, Vol. 135, 493-500, 1988. Google Scholar
28. Salamon , J., J. Moody, and M. Leok, "Geometric representations of Whitney forms and their generalization to Minkowski spacetime," Numerical Analysis, 1402.7109, 2014. Google Scholar
29. Buffa, A. and S. Christiansen, "A dual finite element complex on the barycentric refinement," Math. Comput., Vol. 76, 1743-1769, 2007.
doi:10.1090/S0025-5718-07-01965-5 Google Scholar
30. Osterwalder, K. and R. Schrader, "Axioms for Euclidean Green’s functions," Comm. Math. Phys., Vol. 31, No. 2, 83-112, 1973.
doi:10.1007/BF01645738 Google Scholar
31. Montvay, I. and G. Munster, Quantum Fields on a Lattice, Cambridge University Press, 1994.
doi:10.1017/CBO9780511470783
32. Ambjorn, J., J. Jurkiewicks, and R. Loll, "Emergence of a 4D world from causal quantum gravity," Phys. Rev. Lett., Vol. 93, 131301, 2004.
doi:10.1103/PhysRevLett.93.131301 Google Scholar
33. Ambjorn, J., A. Gorlich, J. Jurkiewicks, and R. Loll, "Nonperturbative quantum gravity," Phys. Rep., Vol. 519, 127, 2012.
doi:10.1016/j.physrep.2012.03.007 Google Scholar
34. Jordan, S. and R. Loll, "Causal dynamical triangulations without preferred foliation," High Energy Physics — Theory, 1305.4582, 2013. Google Scholar
35. Erickon, J., D. Guoy, J. M. Sullivan, and A. Ungor, "Buliding space-time meshes over arbitrary spatial domains," Engg. Computers, Vol. 290, 342-353, 2005.
doi:10.1007/s00366-005-0303-0 Google Scholar
36. Thite, S., "Adaptive spacetime meshing fod discontinuous Galerkin methods," Comp. Geom., Vol. 42, No. 1, 20-44, 2009.
doi:10.1016/j.comgeo.2008.07.003 Google Scholar
37. Stern, A., Y. Tong, M. Desbrun, and J. E. Mardsen, "Variational integrators for mMxwell’s equations with sources," PIERS Online, Vol. 4, No. 7, 711-715, 2008.
doi:10.2529/PIERS071019000855 Google Scholar
38. Kim, J. and F. L. Teixeira, "Parallel and explicit finite-element time-domain method for Maxwell’s equations," IEEE Trans. Antennas Propagat., Vol. 59, No. 6, 2350-2356, 2011.
doi:10.1109/TAP.2011.2143682 Google Scholar
39. Tarhasaari, T., L. Kettunen, and A. Bossavit, "Some realizations of the discrete Hodge operator: A reinterpretation of finite element techniques," IEEE Trans. Magn., Vol. 35, No. 3, 1494-1497, 1999.
doi:10.1109/20.767250 Google Scholar
40. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equation is isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 3, 302-307, 1969. Google Scholar
41. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 1995.
42. Mattiussi, C., "The geometry of time-stepping," Progress In Electromagnetics Research, Vol. 32, 123-149, 2001.
doi:10.2528/PIER00080105 Google Scholar