Vol. 149
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-08-23
Surface and Volume Integral Equation Methods for Time-Harmonic Solutions of Maxwell's Equations (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 149, 15-44, 2014
Abstract
During the last two-three decades the importance of computer simulations based on numerical full-wave solutions of Maxwell's has continuously increased in electrical engineering. Software products based on integral equation methods have an unquestionable importance in the frequency domain electromagnetic analysis and design of open-region problems. This paper deals with the surface and volume integral equation methods for finding time-harmonic solutions of Maxwell's equations. First a review of classical integral equation representations and formulations is given. Thereafter we briefly overview the mathematical background of integral operators and equations and their discretization with the method of moments. The main focus is on advanced techniques that would enable accurate, stable, and scalable solutions on a wide range of material parameters, frequencies and applications. Finally, future perspectives of the integral equation methods for solving Maxwell's equations are discussed.
Citation
Pasi Yla-Oijala, Johannes Markkanen, Seppo Jarvenpaa, and Sami P. Kiminki, "Surface and Volume Integral Equation Methods for Time-Harmonic Solutions of Maxwell's Equations (Invited Paper)," Progress In Electromagnetics Research, Vol. 149, 15-44, 2014.
doi:10.2528/PIER14070105
References

1. Williams, L. and S. Rousselle, "EM at the core of complex microwave system design," IEEE Microwave Magazine, 97-104, Dec. 2008.        Google Scholar

2. Weiland, T., M. Timm, and I. Munteanu, "A practical guide to 3-D simulation," IEEE Microwave Magazine, 62-75, Dec. 2008.        Google Scholar

3. Maxwell, J. C., A Treatise of Electricity and Magnetism, Clarendon Press, Oxford, 1873.

4. Heavyside, O., "On electromagnetic waves, especially in relation to the vorticity of the impressed forces, and the forced vibration of electromagnetic systems," Philos. Mag., Vol. 25, 130-156, 1888.        Google Scholar

5. Chew, W. C., M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool Publishers, 2009.

6. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, 2001.

7. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics, IEEE Press, New York, 1998.

8. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, New York, 2002.

9. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, IEEE Press, John Wiley & Sons, New Jersey , 2006.

10. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.        Google Scholar

11. Taflove, A., Computational Electrodynamics, The Finite-difference Time-domain Method, Artech House, Boston, 1995.

12. Gedney, S. D., Introduction to the FDTD Method for Electromagnetics, Morgan & Claypool, 2011.

13. Kolundzija, B. M. and A. R. Djordjevic, Electromagnetic Modeling of Composite Metallic and Dielectric Structures, Artech House, Boston, 2002.

14. Volakis, J. L. and K. Sertel, Integral Equation Methods for Electromagnetics, Scitech Publishing, Inc., 2012.

15. Chew, W. C., Wave and Fields in Inhomogeneous Media, IEEE Press, New York, 1990.

16. Stratton, J. A. and L. J. Chu, "Diffraction theory of electromagnetic waves," Physical Review, Vol. 56, 99-107, 1939.        Google Scholar

17. Mei, K. K. and J. G. van Bladel, "Scattering by perfectly conducting rectangular cylinders," IEEE Trans. Antennas Propag., Vol. 11, No. 2, 185-192, Mar. 1963.        Google Scholar

18. Andreasen, M. G., "Scattering from parallel metallic cylinders with arbitrary cross section," IEEE Trans. Antennas Propag., Vol. 12, No. 6, 746-754, Nov. 1964.        Google Scholar

19. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross-section shape," IEEE Trans. Antennas Propag., Vol. 13, No. 3, 338-341, May 1965.        Google Scholar

20. Mei, K. K., "On the integral equations for thin wire antennas," IEEE Trans. Antennas Propag., Vol. 13, No. 3, 374-378, May 1965.        Google Scholar

21. Richmond, J. H., "Scattering by an arbitrary array of parallel wires," IEEE Trans. Microw. Theory Techn., Vol. 13, No. 4, 408-412, May 1965.        Google Scholar

22. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Science, Vol. 12, No. 5, 709-718, 1977.        Google Scholar

23. Mautz, J. R. and R. F. Harrington, "H-field, E-field and combined-field solutions for conducting bodies of revolution," Arch. Elektron. ¨ Ubertragungstechn. (Electron. Commun.), Vol. 32, 157-164, 1978.        Google Scholar

24. Mautz, J. R. and R. F. Harrington, "Electromagnetic scattering from a homogeneous material body of revolution," Arch. Elektron. ¨ Ubertragungstechn. (Electron. Commun.), Vol. 33, 71-80, 1979.        Google Scholar

25. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982.        Google Scholar

26. Umashankar, K., A. Taflove, and S. A. Rao, "Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects," IEEE Trans. Antennas Propag., Vol. 34, No. 6, 758-766, 1986.        Google Scholar

27. Medgyesi-Mitschang, L. N., J.M. Putnam, and M. B. Gedera, "Generalized method of moments for three-dimensional penetrable scatterers," J. Opt. Soc. America, A, Vol. 11, 1383-1398, Apr. 1994.        Google Scholar

28. Glisson, A. W., "Electromagnetic scattering with impedance boundary conditions," Radio Science, Vol. 27, No. 6, 935-943, 1992.        Google Scholar

29. Chew, W. C., H. Y. Chao, T. J. Cui, C. C. Lu, S. Ohnuki, Y. C. Pan, J.M. Song, S. Velamparambil, and J. S. Zhao, "Fast integral equation solvers in computational electromagnetics," Eng. Anal. Boundary Elem., Vol. 27, 803-823, 2003.        Google Scholar

30. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propag., Vol. 34, No. 5, 635-640, 1986.        Google Scholar

31. Peters, T. J. and J. L. Volakis, "Application of a conjugate gradient FFT method to scattering from thin planar material plates," IEEE Trans. Antennas Propag., Vol. 36, No. 4, 518-526, 1988.        Google Scholar

32. Zwamborn, A. P. M. and P. M. van den Berg, "Computation of electromagnetic fields inside strongly inhomogeneous objects by the weak-conjugate-gradient fast-Fourier-transform method," J. Opt. Soc. Am. A,, Vol. 11, 1414-1420, 1994.        Google Scholar

33. Gan, H. and W. C. Chew, "A discrete BCG-FFT algorithm for solving 3D inhomogeneous scattering problems," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 10, 1339-1357, 1995.        Google Scholar

34. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, No. 5, 1225-1251, Sep.-Oct. 1996.        Google Scholar

35. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 16, No. 10, 1059-1072, 1997.        Google Scholar

36. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Physics, Vol. 86, No. 2, 414-439, 1990.        Google Scholar

37. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microw. Opt. Techn. Lett., Vol. 10, No. 1, 14-19, 1995.        Google Scholar

38. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997.        Google Scholar

39. Sheng, X.-Q., J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, "Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1718-1726, 1998.        Google Scholar

40. Pan, X.-M. and X.-Q. Sh, "A sophisticated parallel MLFMA for scattering by extremely large targets," IEEE Antennas Propag. Mag., Vol. 50, No. 3, 129-138, 2008.        Google Scholar

41. Ergul , O. and L. Gure, "Rigorous solutions of electromagnetics problems involving hundreds of millions of unknowns," IEEE Antennas Propag. Mag., Vol. 53, No. 1, 18-27, 2011.        Google Scholar

42. Zhao, J.-S. and W. C. Chew, "Integral equation solution of Maxwell’s equations from zero frequency to microwave frequencies," IEEE Trans. Antennas Propag., Vol. 48, No. 10, 1635-1645, 2000.        Google Scholar

43. Adam, R. J., "Physical and analytical properties of a stabilized electric field integral equation," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 362-372, 2004.        Google Scholar

44. Vipiana, F., P. Pirinoli, and G. Vecchi, "A multiresolution method of moments for triangular meshes," IEEE Trans. Antennas Propag., Vol. 53, No. 7, 2247-2258, 2005.        Google Scholar

45. Andriulli, F. P., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderon preconditioner for the electric field integral equation," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2398-2412, 2008.        Google Scholar

46. Qian, Z. G. and W. C. Chew, "An augmented electric field integral equation for high-speed interconnect analysis," Microw. Opt. Techn. Lett., Vol. 50, No. 10, 2658-2662, 2008.        Google Scholar

47. Andriulli, F. P., K. Cools, I. Bogaert, and E. Michielssen, "On a well-conditioned electric-field integral operator for multiple connected geometries," IEEE Trans. Antennas Propag., Vol. 61, No. 4(2), 2077-2087, 2013.        Google Scholar

48. Yla-Oijala, P., M. Taskinen, and S. Jarvenpaa, "Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods," Radio Science, Vol. 40, No. 6, RS6002, 2005.        Google Scholar

49. Taskinen, M. and P. Yla-Oijala, "Current and charge integral equation formulation," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 58-67, 2006.        Google Scholar

50. Epstein, C. L. and L. Greengard, "Debye sources and the numerical solution of the time harmonic Maxwell equations," Communications on Pure and Applied Mathematics, Vol. LXIII, 413-463, 2010.        Google Scholar

51. Markkanen, J., C.-C. Lu, X. Cao, and P. Yla-Oijala, "Analysis of volume integral equations for scattering by high-contrast penetrable objects," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2367-2374, 2012.        Google Scholar

52. Ubeda, E. and J. M. Rius, "New electric-magnetic field integral equation for the scattering analysis of perfectly conducting sharp-edged objects at very low or extremely low frequencies," 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), Toronto, Canada, Jul. 11-17, 2010.        Google Scholar

53. Yla-Oijala, P., S. P. Kiminki, and S. Jarvenpaa, "Solving IBC-CFIE with dual basis functions," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3997-4004, 2010.        Google Scholar

54. Cools, K., F. P. Andriulli, D. De Zutter, and E. Michielssen, "Accurate and conforming mixed discretization of the MFIE," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 528-531, 2011.        Google Scholar

55. Ubeda, E., J. M. Tamayo, and J. M. Rius, "Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects," Progress In Electromagnetics Research, Vol. 119, 85-105, 2011.        Google Scholar

56. Yl¨a-Oijala, P., S. P. Kiminki, K. Cools, F. P. Andriulli, and S. Jarvenpa, "Mixed discretization schemes for electromagnetic surface integral equations," Internat. J. Num. Model.: Electronic Networks, Devices and Fields, Vol. 25, No. 5, 525-540, 2012.        Google Scholar

57. Markkanen, J., P. Yl¨a-Oijala, and A. Sihvola, "Discretization of the volume integral equation formulations for extremely anisotropic materials," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5195-5202, 2012.        Google Scholar

58. Yan, S. and J.-M. Jin, "Self-dual integral equations for electromagnetic scattering from IBC objects," IEEE Trans. Antennas Propag., Vol. 61, No. 11, 5533-5546, 2013.        Google Scholar

59. Dault, D. L., N. V. Nair, J. Li, and B. Shanker, "The generalized method of moments for electromagnetic boundary integral equations," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3174-3188, 2014.        Google Scholar

60. Ubeda, E., J. M. Rius, and A. Heldring, "Nonconforming discretization of the electric-field integral equation for closed perfectly conducting objects," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4171-4186, 2014.        Google Scholar

61. Yla-Oijala, P., S. P. Kiminki, J. Markkanen, and S. Jarvenpaa, "Error-controllable and well-conditioned MoM solutions in computational electromagnetics: Ultimate surface integral equation formulation," IEEE Antennas Propag. Magaz., Vol. 55, No. 6, 310-331, 2013.        Google Scholar

62. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Wave Series 47, IEE, Hertfordshire, United Kingdom, 1999.

63. Hoppe, D. J. and Y. Rahmat-Samii, Impedance Boundary Conditions in Electromagnetics, Taylor & Francis, Washington, DC, 1995.

64. Wallen, H., I. V. Lindell, and A. Sihvola, "Mixed-impedance boundary conditions," IEEE Trans. Antennas and Propag., Vol. 59, No. 5, 1580-1586, 2011.        Google Scholar

65. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary conditions defined in terms of normal field components," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1128-1135, 2010.        Google Scholar

66. Lindell, I. V., Methods for Electromagnetic Field Analysis, 2nd edition, IEEE Press, New York, 1995.

67. Yaghijan, A. D., "Augmented electric- and magnetic-field integral equations," Radio Science, Vol. 16, No. 6, 987-1001, 1981.        Google Scholar

68. Yla-Oijala, P., M. Taskinen, and S. Jarvenpaa, "Analysis of surface integral equations in electromagnetic scattering and radiation problems," Engineering Analysis with Boundary Elements, Vol. 32, 196-209, 2008.        Google Scholar

69. Yla-Oijala, P. and M. Taskinen, "Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1168-1173, 2005.        Google Scholar

70. Harrington, R. F., "Boundary integral formulations for homogeneous material bodies," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 1, 1-15, 1989.        Google Scholar

71. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three-dimensional scattering problems," Computer Techniques for Electromagnetics, R. Mittra (ed.), Pergamon Press, Oxford, U.K., 1973.        Google Scholar

72. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Integral equation formulations for imperfectly conducting scatterers," IEEE Trans. Antennas Propag., Vol. 33, No. 2, 206-214, 1985.        Google Scholar

73. Markkanen, J., P. Yla-Oijala, and A. Sihvola, "Computation of scattering by DB objects with surface integral equation method," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 154-161, 2011.        Google Scholar

74. Kiminki, S. P., J. Markkanen, and P. Yla-Oijala, "Integral equation solution for the D’B’ boundary condition," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 526-529, 2010.        Google Scholar

75. Yla-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetic Research, Vol. 52, 81-108, 2005.        Google Scholar

76. Volakis, J. L., "Alternative field representations and integral equations for modeling inhomogeneous dielectrics," IEEE Trans. Microw. Theory Techn., Vol. 40, 604-608, 1992.        Google Scholar

77. Lu, C. C. and W. C. Chew, "A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets," IEEE Trans. Antennas Propag., Vol. 48, No. 12, 1866-1868, 2000.        Google Scholar

78. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

79. Wilton, D. R., Computational Methods, Chapter 1.5.5 in Scattering and Inverse Scattering in Pure and Applied Science, Roy Pick and Pierre Sabatier (eds.), 316–365, Elsevier, 2002.

80. Hsiao, G. C. and R. E. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 316-328, 1997.        Google Scholar

81. Bossavit, A., Computational Electromagnetism, Variational Formulations, Complementary, Edge Elements, Academic Press, San Diego, USA, 1998.

82. Monk, P., Finite Element Methods for Maxwell’s Equations, Oxford Science Publications, Clarendon Press, Oxford, 2003.

83. Buffa, A., M. Costabel, and C. Schwab, "Boundary element methods for Maxwell’s equations on non-smooth domains," Numerische Mathematic, Vol. 92, 679-710, 2002.        Google Scholar

84. Warnick, K., Numerical Analysis for Electromagnetic Integral Equations, Artech House, 2008.

85. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propag., Vol. 32, No. 3, 276-281, 1984.        Google Scholar

86. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3-D Green’s function or its gradient on a plane triangle," IEEE Trans. Antennas Propag., Vol. 41, No. 9, 1448-1455, 1993.        Google Scholar

87. Yla-Oijala, P. and M. Taskinen, "Calculation of CFIE impedance matrix elements with RWG and nxRWG functions," IEEE Trans. Antennas Propag., Vol. 51, No. 8, 1837-1848, 2003.        Google Scholar

88. Jarvenpaa, S., M. Taskinen, and P. Yla-Oijala, "Singularity subtraction technique for high-order polynomial vector basis functions on planar triangles," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 42-49, 2006.        Google Scholar

89. Khayat, M. A. and D. R. Wilton, "Numerical evaluation of singular and near-singular potential integrals," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3180-3190, 2005.        Google Scholar

90. Polimeridis, A. G. and T. V. Yioultsis, "On the direct evaluation of weakly singular integrals in Galerkin mixed potential integral equation formulations," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 3011-3019, 2008.        Google Scholar

91. Van Beurden, M. C. and S. J. L. van Eijndhoven, "Gaps in present discretization schemes for domain integral equations," International Conference on Electromagnetics in Advanced Applications, ICEAA 2007, Torino, 2007.        Google Scholar

92. Van Beurden, M. C. and S. J. L. van Eijndhoven, "Well-posedness of domain integral equations for a dielectric object in homogeneous background," J. Eng. Math., Vol. 62, 289-302, 2008.        Google Scholar

93. Schaubert, D., D. Wilton, and A. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily inhomogeneous dielectric bodies," IEEE Trans. Antennas Propag., Vol. 32, No. 1, 77-85, 1984.        Google Scholar

94. Nedelec, J. C., "Mixed finite elements in R3," Numerische Mathematik, Vol. 35, 315-341, 1980.        Google Scholar

95. Christiansen, S. H. and J.-C. Nedelec, "A preconditioner for the electric field integral equation based on Calderon formulas," SIAM J. Numerical Anal., Vol. 40, No. 3, 459-485, 200.        Google Scholar

96. Buffa, A. and S. H. Christiansen, "A dual finite element complex on the barycentric refinement," Math. Comput., Vol. 76, No. 260, 1743-1769, 2007.        Google Scholar

97. Kiminki, S. P., I. Bogaert, and P. Yla-Oijala, "Dual basis for the fully linear LL functions," 2012 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, Chicago, Illinois, USA, Jul. 8-14, 2012.        Google Scholar

98. Contopanagos, H., B. Dembart, M. Epton, J. J. Ottusch, V. Rokhlin, J. L. Fisher, and S. M. Wandzura, "Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering," IEEE Trans. Antennas Propag., Vol. 50, No. 12, 1824-1830, 2002.        Google Scholar

99. Li, M. and W. C. Chew, "Applying divergence-free condition solving the volume integral equations," Progress In Electromagnetic Research, Vol. 57, 311-333, 2006.        Google Scholar

100. Markkanen, J., P. Yla-Oijala, and S. Jarvenpaa, "Volume integral equation formulations in computational electromagnetics," International Conference on Electromagnetics in Advanced Applications, Torino, Italy, Sep. 9-13, 2013.        Google Scholar

101. Costabel, M., E. Darrigrand, and H. Sakly, "Essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body," Comptes Rendus Mathematique, Vol. 350, No. 3–4, 193-197, 2012.        Google Scholar

102. Hiptmair, R. and C. Schwab, "Natural boundary element methods for the electric field integral equation on polyhedra," SIAM J. Numer. Anal., Vol. 40, No. 1, 66-86, 2002.        Google Scholar

103. Buffa, A., R. Hiptmair, T. von Petersdorff, and C. Schawb, "Boundary element methods for Boundary element methods for Maxwell transmission problems in Lipschitz domains," Numer. Math., Vol. 95, 459-485, 2003.        Google Scholar

104. Muller, C., Foundations of the Mathematical Theory of Electromagnetic Waves, Springer, Berlin, 1969.

105. Liu, Y. A. and W. C. Chew, "Stability of surface integral equation for left-handed materials," IET Microw. Antennas Propag., Vol. 1, No. 1, 84-89, 2007.        Google Scholar

106. Yla-Oijala, P. and M. Taskinen, "Improving conditioning of electromagnetic surface integral equations using normalized field quantities," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 178-185, 2007.        Google Scholar

107. Wilton, D. R. and A. W. Glisson, "On improving stability of the electric field integral equation at low frequencies," Proceedings of URSI Radio Science Meeting, Vol. 24, Los Angeles, CA, Jun. 1981.        Google Scholar

108. Mautz, J. R. and R. F. Harrington, "An E-field solution for a conducting surface small or comparable to the wavelength," IEEE Trans. Antennas Propag., Vol. 32, No. 4, 330-339, 1984.        Google Scholar

109. Wu, W.-L., A. W. Glisson, and D. Kajfez, "A study of two numerical solution procedures for the electric field integral equation at low frequency," Appl. Comput. Soc. J., Vol. 10, No. 3, 69-80, 1995.        Google Scholar

110. Yla-Oijala, P. and M. Taskinen, "Well-conditioned M¨uller formulation for electromagnetic scattering by dielectric objects," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3316-332, 2005.        Google Scholar

111. Vecchi, G., "Loop-star decomposition of basis functions in the discretization of the EFIE," IEEE Trans. Antennas Propag., Vol. 47, No. 2, 339-346, 1999.        Google Scholar

112. Andriulli, F. P., A. Tabacco, and G. Vecchi, "Solving the EFIE at low frequencies with a conditioning that grows only logarithmically with the number of unknowns," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1614-1623, 2010.        Google Scholar

113. Chen, S. Y., W. C. Chew, J. M. Song, and J.-S. Zhao, "Analysis of low-frequency scattering from penetrable scatterers," IEEE Trans. Geosc. Remote Sensing, Vol. 39, No. 4, 726-735, 2001.        Google Scholar

114. Yla-Oijala, P., S. P. Kiminki, and S. Jarvenpa, "Electromagnetic surface integral equation representations in terms of scalar functions," International Conference on Electromagnetics in Advanced Applications, Torino, Italy, Sep. 9-13, 2013.        Google Scholar

115. Gulzow, V., "An integral equation method for the time-harmonic Maxwell equations with boundary conditions for the normal components," J. Integral Eq., Vol. 1, No. 3, 1988.        Google Scholar

116. Stephanson, M. B. and J.-F. Lee, "Preconditioned electric field integral equation using Calderon identities and dual loop/star basis functions," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1274-1279, 2009.        Google Scholar

117. Bagci, H., F. P. Andriulli, K. Cools, F. Olyslager, and E. Michielssen, "A Caldern multiplicative preconditioner for the combined field integral equation," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3387-3392, 2009.        Google Scholar

118. Cools, K., F. P. Andriulli, and E. Michielssen, "A Calderon multiplicative preconditioner for the PMCHWT integral equation," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4579-4587, 2011.        Google Scholar

119. Begheim, Y., K. Cools, F. P. Andriulli, D. De Zutter, and E. Michielssen, "A Caldern multiplicative preconditioner for the PMCHWT equation for scattering by chiral objects," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4239-4248, 2012.        Google Scholar

120. Jarvenpaa, S. and P. Yla-Oijala, "A global interpolator with low sample rate for multilevel fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1291-1300, 2013.        Google Scholar

121. Gumerov, N. A. and R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, Elsevier, Amsterdam, The Netherlands, 2006.

122. Jarvenpa, S., J. Markkanen, and P. Yla-Oijala, "Broadband multilevel fast multipole algorithm for electric-magnetic current volume integral equation," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4393-4397, 2013.        Google Scholar

123. Jiang, L. J. and W. C. Chew, "Low-frequency fast inhomogeneous plane-wave algorithm (LFFIPWA)," Microw. Opt. Techn. Lett., Vol. 40, No. 2, 117-122, 2004.        Google Scholar

124. Darve., E. and P. Have, "A fast multipole method for Maxwell’s equations stable at all frequencies," Phil. Trans. Royal Society of London A, Vol. 362, No. 1816, 603-628, Mar. 2004.        Google Scholar

125. Wallen, H. and J. Sarvas, "Translation procedures for broadband MLFMA," Progress In Electromagnetic Research, Vol. 55, 47-78, 2005.        Google Scholar

126. Koc, S., J. Song, and W. C. Chew, "Error analysis for the numerical evaluation of the diagonal Error analysis for the numerical evaluation of the diagonal," SIAM J. Anal., Vol. 36, No. 3, 906-921, 1999.        Google Scholar

127. Darve, E., "The fast multipole method: Numerical implementation," J. Comput. Phys., Vol. 160, 195-240, 2000.        Google Scholar

128. Sarvas, J., "Performing interpolation and anterpolation entirely by fast Fourier transform in the 3-D multilevel fast multipole algorithm," SIAM J. Numer. Anal., Vol. 41, No. 6, 2180-2196, 2003.        Google Scholar

129. Cecka, C. and E. Darve, "Fourier-based fast multipole method for the Helmholtz equation," SIAM J. Sci. Comput., Vol. 35, No. 1, A79-A103, 2013.        Google Scholar

130. Jarvenpaa, S. and P. Yla-Oijala, "Multilevel fast multipole algorithm with local and global interpolators," 2013 IEEE International Symposium on Antennas and Propagation and USNCURSI National Radio Science Meeting, Orlando, Florida, USA, Jul. 7-13, 2013.        Google Scholar

131. Ergul, O. and L. Grel, "A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1740-1750, 2009.        Google Scholar

132. Fostier, J. and F. Olyslager, "An asynchronous parallel MLFMA for scattering at multiple dielectric objects," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2346-2355, 2008.        Google Scholar

133. Li, M. K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 130-138, 2007.        Google Scholar

134. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "An eigencurrent approach to the analysis of electrically large 3-D structures using linear embedding via Green’s operators," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3575-3585, 2009.        Google Scholar

135. Peng, Z., X.-C. Wang, and J.-F. Lee, "Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3328-3338, 2011.        Google Scholar

136. Georgieva, N. K., S. Glavic, M. H. Bakr, and J. W. Bandler, "Feasible adjoint sensitivity technique for EM design optimization," IEEE Trans. Microw. Theory Techn., Vol. 50, No. 12, 2751-2758, 2002.        Google Scholar

137. Nikolova, N. K., J. Zhu, D. Li, M. H. Bakr, and J. W. Bandler, "Sensitivity analysis of network parameters with electromagnetic frequency-domain simulators," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 2, 670-681, 2006.        Google Scholar

138. Toivanen, J. I., R. A. E. Makinen, S. Jarvenpaa, P. Yla-Oijala, and J. Rahola, "Electromagnetic sensitivity analysis and shape optimization using method of moments and automatic differentiation," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 168-175, 2009.        Google Scholar

139. Kataja, J. and J. I. Toivanen, "On shape differentiation of discretized electric field integral equation," Eng. Anal. Boundary Elem., Vol. 37, No. 9, 1197-1203, 2013.        Google Scholar

140. Kataja, J., S. Jarvenpaa, and R. A. E. Makinen, "Shape sensitivity analysis of electrically large metallic electromagnetic scatterers," Opt-i, An International Conference on Engineering and Applied Sciences Optimization, Kos Island, Greece, Jun. 4-6, 2014.        Google Scholar