1. Williams, L. and S. Rousselle, "EM at the core of complex microwave system design," IEEE Microwave Magazine, 97-104, Dec. 2008. Google Scholar
2. Weiland, T., M. Timm, and I. Munteanu, "A practical guide to 3-D simulation," IEEE Microwave Magazine, 62-75, Dec. 2008. Google Scholar
3. Maxwell, J. C., A Treatise of Electricity and Magnetism, Clarendon Press, Oxford, 1873.
4. Heavyside, O., "On electromagnetic waves, especially in relation to the vorticity of the impressed forces, and the forced vibration of electromagnetic systems," Philos. Mag., Vol. 25, 130-156, 1888. Google Scholar
5. Chew, W. C., M. S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool Publishers, 2009.
6. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, 2001.
7. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics, IEEE Press, New York, 1998.
8. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, New York, 2002.
9. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, IEEE Press, John Wiley & Sons, New Jersey , 2006.
10. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966. Google Scholar
11. Taflove, A., Computational Electrodynamics, The Finite-difference Time-domain Method, Artech House, Boston, 1995.
12. Gedney, S. D., Introduction to the FDTD Method for Electromagnetics, Morgan & Claypool, 2011.
13. Kolundzija, B. M. and A. R. Djordjevic, Electromagnetic Modeling of Composite Metallic and Dielectric Structures, Artech House, Boston, 2002.
14. Volakis, J. L. and K. Sertel, Integral Equation Methods for Electromagnetics, Scitech Publishing, Inc., 2012.
15. Chew, W. C., Wave and Fields in Inhomogeneous Media, IEEE Press, New York, 1990.
16. Stratton, J. A. and L. J. Chu, "Diffraction theory of electromagnetic waves," Physical Review, Vol. 56, 99-107, 1939. Google Scholar
17. Mei, K. K. and J. G. van Bladel, "Scattering by perfectly conducting rectangular cylinders," IEEE Trans. Antennas Propag., Vol. 11, No. 2, 185-192, Mar. 1963. Google Scholar
18. Andreasen, M. G., "Scattering from parallel metallic cylinders with arbitrary cross section," IEEE Trans. Antennas Propag., Vol. 12, No. 6, 746-754, Nov. 1964. Google Scholar
19. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross-section shape," IEEE Trans. Antennas Propag., Vol. 13, No. 3, 338-341, May 1965. Google Scholar
20. Mei, K. K., "On the integral equations for thin wire antennas," IEEE Trans. Antennas Propag., Vol. 13, No. 3, 374-378, May 1965. Google Scholar
21. Richmond, J. H., "Scattering by an arbitrary array of parallel wires," IEEE Trans. Microw. Theory Techn., Vol. 13, No. 4, 408-412, May 1965. Google Scholar
22. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Science, Vol. 12, No. 5, 709-718, 1977. Google Scholar
23. Mautz, J. R. and R. F. Harrington, "H-field, E-field and combined-field solutions for conducting bodies of revolution," Arch. Elektron. ¨ Ubertragungstechn. (Electron. Commun.), Vol. 32, 157-164, 1978. Google Scholar
24. Mautz, J. R. and R. F. Harrington, "Electromagnetic scattering from a homogeneous material body of revolution," Arch. Elektron. ¨ Ubertragungstechn. (Electron. Commun.), Vol. 33, 71-80, 1979. Google Scholar
25. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, No. 3, 409-418, 1982. Google Scholar
26. Umashankar, K., A. Taflove, and S. A. Rao, "Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects," IEEE Trans. Antennas Propag., Vol. 34, No. 6, 758-766, 1986. Google Scholar
27. Medgyesi-Mitschang, L. N., J.M. Putnam, and M. B. Gedera, "Generalized method of moments for three-dimensional penetrable scatterers," J. Opt. Soc. America, A, Vol. 11, 1383-1398, Apr. 1994. Google Scholar
28. Glisson, A. W., "Electromagnetic scattering with impedance boundary conditions," Radio Science, Vol. 27, No. 6, 935-943, 1992. Google Scholar
29. Chew, W. C., H. Y. Chao, T. J. Cui, C. C. Lu, S. Ohnuki, Y. C. Pan, J.M. Song, S. Velamparambil, and J. S. Zhao, "Fast integral equation solvers in computational electromagnetics," Eng. Anal. Boundary Elem., Vol. 27, 803-823, 2003. Google Scholar
30. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propag., Vol. 34, No. 5, 635-640, 1986. Google Scholar
31. Peters, T. J. and J. L. Volakis, "Application of a conjugate gradient FFT method to scattering from thin planar material plates," IEEE Trans. Antennas Propag., Vol. 36, No. 4, 518-526, 1988. Google Scholar
32. Zwamborn, A. P. M. and P. M. van den Berg, "Computation of electromagnetic fields inside strongly inhomogeneous objects by the weak-conjugate-gradient fast-Fourier-transform method," J. Opt. Soc. Am. A,, Vol. 11, 1414-1420, 1994. Google Scholar
33. Gan, H. and W. C. Chew, "A discrete BCG-FFT algorithm for solving 3D inhomogeneous scattering problems," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 10, 1339-1357, 1995. Google Scholar
34. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Science, Vol. 31, No. 5, 1225-1251, Sep.-Oct. 1996. Google Scholar
35. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 16, No. 10, 1059-1072, 1997. Google Scholar
36. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Physics, Vol. 86, No. 2, 414-439, 1990. Google Scholar
37. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microw. Opt. Techn. Lett., Vol. 10, No. 1, 14-19, 1995. Google Scholar
38. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997. Google Scholar
39. Sheng, X.-Q., J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, "Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1718-1726, 1998. Google Scholar
40. Pan, X.-M. and X.-Q. Sh, "A sophisticated parallel MLFMA for scattering by extremely large targets," IEEE Antennas Propag. Mag., Vol. 50, No. 3, 129-138, 2008. Google Scholar
41. Ergul , O. and L. Gure, "Rigorous solutions of electromagnetics problems involving hundreds of millions of unknowns," IEEE Antennas Propag. Mag., Vol. 53, No. 1, 18-27, 2011. Google Scholar
42. Zhao, J.-S. and W. C. Chew, "Integral equation solution of Maxwell’s equations from zero frequency to microwave frequencies," IEEE Trans. Antennas Propag., Vol. 48, No. 10, 1635-1645, 2000. Google Scholar
43. Adam, R. J., "Physical and analytical properties of a stabilized electric field integral equation," IEEE Trans. Antennas Propag., Vol. 52, No. 2, 362-372, 2004. Google Scholar
44. Vipiana, F., P. Pirinoli, and G. Vecchi, "A multiresolution method of moments for triangular meshes," IEEE Trans. Antennas Propag., Vol. 53, No. 7, 2247-2258, 2005. Google Scholar
45. Andriulli, F. P., K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen, and E. Michielssen, "A multiplicative Calderon preconditioner for the electric field integral equation," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2398-2412, 2008. Google Scholar
46. Qian, Z. G. and W. C. Chew, "An augmented electric field integral equation for high-speed interconnect analysis," Microw. Opt. Techn. Lett., Vol. 50, No. 10, 2658-2662, 2008. Google Scholar
47. Andriulli, F. P., K. Cools, I. Bogaert, and E. Michielssen, "On a well-conditioned electric-field integral operator for multiple connected geometries," IEEE Trans. Antennas Propag., Vol. 61, No. 4(2), 2077-2087, 2013. Google Scholar
48. Yla-Oijala, P., M. Taskinen, and S. Jarvenpaa, "Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods," Radio Science, Vol. 40, No. 6, RS6002, 2005. Google Scholar
49. Taskinen, M. and P. Yla-Oijala, "Current and charge integral equation formulation," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 58-67, 2006. Google Scholar
50. Epstein, C. L. and L. Greengard, "Debye sources and the numerical solution of the time harmonic Maxwell equations," Communications on Pure and Applied Mathematics, Vol. LXIII, 413-463, 2010. Google Scholar
51. Markkanen, J., C.-C. Lu, X. Cao, and P. Yla-Oijala, "Analysis of volume integral equations for scattering by high-contrast penetrable objects," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2367-2374, 2012. Google Scholar
52. Ubeda, E. and J. M. Rius, "New electric-magnetic field integral equation for the scattering analysis of perfectly conducting sharp-edged objects at very low or extremely low frequencies," 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), Toronto, Canada, Jul. 11-17, 2010. Google Scholar
53. Yla-Oijala, P., S. P. Kiminki, and S. Jarvenpaa, "Solving IBC-CFIE with dual basis functions," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3997-4004, 2010. Google Scholar
54. Cools, K., F. P. Andriulli, D. De Zutter, and E. Michielssen, "Accurate and conforming mixed discretization of the MFIE," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 528-531, 2011. Google Scholar
55. Ubeda, E., J. M. Tamayo, and J. M. Rius, "Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects," Progress In Electromagnetics Research, Vol. 119, 85-105, 2011. Google Scholar
56. Yl¨a-Oijala, P., S. P. Kiminki, K. Cools, F. P. Andriulli, and S. Jarvenpa, "Mixed discretization schemes for electromagnetic surface integral equations," Internat. J. Num. Model.: Electronic Networks, Devices and Fields, Vol. 25, No. 5, 525-540, 2012. Google Scholar
57. Markkanen, J., P. Yl¨a-Oijala, and A. Sihvola, "Discretization of the volume integral equation formulations for extremely anisotropic materials," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5195-5202, 2012. Google Scholar
58. Yan, S. and J.-M. Jin, "Self-dual integral equations for electromagnetic scattering from IBC objects," IEEE Trans. Antennas Propag., Vol. 61, No. 11, 5533-5546, 2013. Google Scholar
59. Dault, D. L., N. V. Nair, J. Li, and B. Shanker, "The generalized method of moments for electromagnetic boundary integral equations," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 3174-3188, 2014. Google Scholar
60. Ubeda, E., J. M. Rius, and A. Heldring, "Nonconforming discretization of the electric-field integral equation for closed perfectly conducting objects," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 4171-4186, 2014. Google Scholar
61. Yla-Oijala, P., S. P. Kiminki, J. Markkanen, and S. Jarvenpaa, "Error-controllable and well-conditioned MoM solutions in computational electromagnetics: Ultimate surface integral equation formulation," IEEE Antennas Propag. Magaz., Vol. 55, No. 6, 310-331, 2013. Google Scholar
62. Sihvola, A., Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Wave Series 47, IEE, Hertfordshire, United Kingdom, 1999.
63. Hoppe, D. J. and Y. Rahmat-Samii, Impedance Boundary Conditions in Electromagnetics, Taylor & Francis, Washington, DC, 1995.
64. Wallen, H., I. V. Lindell, and A. Sihvola, "Mixed-impedance boundary conditions," IEEE Trans. Antennas and Propag., Vol. 59, No. 5, 1580-1586, 2011. Google Scholar
65. Lindell, I. V. and A. Sihvola, "Electromagnetic boundary conditions defined in terms of normal field components," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1128-1135, 2010. Google Scholar
66. Lindell, I. V., Methods for Electromagnetic Field Analysis, 2nd edition, IEEE Press, New York, 1995.
67. Yaghijan, A. D., "Augmented electric- and magnetic-field integral equations," Radio Science, Vol. 16, No. 6, 987-1001, 1981. Google Scholar
68. Yla-Oijala, P., M. Taskinen, and S. Jarvenpaa, "Analysis of surface integral equations in electromagnetic scattering and radiation problems," Engineering Analysis with Boundary Elements, Vol. 32, 196-209, 2008. Google Scholar
69. Yla-Oijala, P. and M. Taskinen, "Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1168-1173, 2005. Google Scholar
70. Harrington, R. F., "Boundary integral formulations for homogeneous material bodies," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 1, 1-15, 1989. Google Scholar
71. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three-dimensional scattering problems," Computer Techniques for Electromagnetics, R. Mittra (ed.), Pergamon Press, Oxford, U.K., 1973. Google Scholar
72. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Integral equation formulations for imperfectly conducting scatterers," IEEE Trans. Antennas Propag., Vol. 33, No. 2, 206-214, 1985. Google Scholar
73. Markkanen, J., P. Yla-Oijala, and A. Sihvola, "Computation of scattering by DB objects with surface integral equation method," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 154-161, 2011. Google Scholar
74. Kiminki, S. P., J. Markkanen, and P. Yla-Oijala, "Integral equation solution for the D’B’ boundary condition," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 526-529, 2010. Google Scholar
75. Yla-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetic Research, Vol. 52, 81-108, 2005. Google Scholar
76. Volakis, J. L., "Alternative field representations and integral equations for modeling inhomogeneous dielectrics," IEEE Trans. Microw. Theory Techn., Vol. 40, 604-608, 1992. Google Scholar
77. Lu, C. C. and W. C. Chew, "A coupled surface-volume integral equation approach for the calculation of electromagnetic scattering from composite metallic and material targets," IEEE Trans. Antennas Propag., Vol. 48, No. 12, 1866-1868, 2000. Google Scholar
78. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.
79. Wilton, D. R., Computational Methods, Chapter 1.5.5 in Scattering and Inverse Scattering in Pure and Applied Science, Roy Pick and Pierre Sabatier (eds.), 316–365, Elsevier, 2002.
80. Hsiao, G. C. and R. E. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 316-328, 1997. Google Scholar
81. Bossavit, A., Computational Electromagnetism, Variational Formulations, Complementary, Edge Elements, Academic Press, San Diego, USA, 1998.
82. Monk, P., Finite Element Methods for Maxwell’s Equations, Oxford Science Publications, Clarendon Press, Oxford, 2003.
83. Buffa, A., M. Costabel, and C. Schwab, "Boundary element methods for Maxwell’s equations on non-smooth domains," Numerische Mathematic, Vol. 92, 679-710, 2002. Google Scholar
84. Warnick, K., Numerical Analysis for Electromagnetic Integral Equations, Artech House, 2008.
85. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propag., Vol. 32, No. 3, 276-281, 1984. Google Scholar
86. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3-D Green’s function or its gradient on a plane triangle," IEEE Trans. Antennas Propag., Vol. 41, No. 9, 1448-1455, 1993. Google Scholar
87. Yla-Oijala, P. and M. Taskinen, "Calculation of CFIE impedance matrix elements with RWG and nxRWG functions," IEEE Trans. Antennas Propag., Vol. 51, No. 8, 1837-1848, 2003. Google Scholar
88. Jarvenpaa, S., M. Taskinen, and P. Yla-Oijala, "Singularity subtraction technique for high-order polynomial vector basis functions on planar triangles," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 42-49, 2006. Google Scholar
89. Khayat, M. A. and D. R. Wilton, "Numerical evaluation of singular and near-singular potential integrals," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3180-3190, 2005. Google Scholar
90. Polimeridis, A. G. and T. V. Yioultsis, "On the direct evaluation of weakly singular integrals in Galerkin mixed potential integral equation formulations," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 3011-3019, 2008. Google Scholar
91. Van Beurden, M. C. and S. J. L. van Eijndhoven, "Gaps in present discretization schemes for domain integral equations," International Conference on Electromagnetics in Advanced Applications, ICEAA 2007, Torino, 2007. Google Scholar
92. Van Beurden, M. C. and S. J. L. van Eijndhoven, "Well-posedness of domain integral equations for a dielectric object in homogeneous background," J. Eng. Math., Vol. 62, 289-302, 2008. Google Scholar
93. Schaubert, D., D. Wilton, and A. Glisson, "A tetrahedral modeling method for electromagnetic scattering by arbitrarily inhomogeneous dielectric bodies," IEEE Trans. Antennas Propag., Vol. 32, No. 1, 77-85, 1984. Google Scholar
94. Nedelec, J. C., "Mixed finite elements in R3," Numerische Mathematik, Vol. 35, 315-341, 1980. Google Scholar
95. Christiansen, S. H. and J.-C. Nedelec, "A preconditioner for the electric field integral equation based on Calderon formulas," SIAM J. Numerical Anal., Vol. 40, No. 3, 459-485, 200. Google Scholar
96. Buffa, A. and S. H. Christiansen, "A dual finite element complex on the barycentric refinement," Math. Comput., Vol. 76, No. 260, 1743-1769, 2007. Google Scholar
97. Kiminki, S. P., I. Bogaert, and P. Yla-Oijala, "Dual basis for the fully linear LL functions," 2012 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, Chicago, Illinois, USA, Jul. 8-14, 2012. Google Scholar
98. Contopanagos, H., B. Dembart, M. Epton, J. J. Ottusch, V. Rokhlin, J. L. Fisher, and S. M. Wandzura, "Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering," IEEE Trans. Antennas Propag., Vol. 50, No. 12, 1824-1830, 2002. Google Scholar
99. Li, M. and W. C. Chew, "Applying divergence-free condition solving the volume integral equations," Progress In Electromagnetic Research, Vol. 57, 311-333, 2006. Google Scholar
100. Markkanen, J., P. Yla-Oijala, and S. Jarvenpaa, "Volume integral equation formulations in computational electromagnetics," International Conference on Electromagnetics in Advanced Applications, Torino, Italy, Sep. 9-13, 2013. Google Scholar
101. Costabel, M., E. Darrigrand, and H. Sakly, "Essential spectrum of the volume integral operator in electromagnetic scattering by a homogeneous body," Comptes Rendus Mathematique, Vol. 350, No. 3–4, 193-197, 2012. Google Scholar
102. Hiptmair, R. and C. Schwab, "Natural boundary element methods for the electric field integral equation on polyhedra," SIAM J. Numer. Anal., Vol. 40, No. 1, 66-86, 2002. Google Scholar
103. Buffa, A., R. Hiptmair, T. von Petersdorff, and C. Schawb, "Boundary element methods for Boundary element methods for Maxwell transmission problems in Lipschitz domains," Numer. Math., Vol. 95, 459-485, 2003. Google Scholar
104. Muller, C., Foundations of the Mathematical Theory of Electromagnetic Waves, Springer, Berlin, 1969.
105. Liu, Y. A. and W. C. Chew, "Stability of surface integral equation for left-handed materials," IET Microw. Antennas Propag., Vol. 1, No. 1, 84-89, 2007. Google Scholar
106. Yla-Oijala, P. and M. Taskinen, "Improving conditioning of electromagnetic surface integral equations using normalized field quantities," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 178-185, 2007. Google Scholar
107. Wilton, D. R. and A. W. Glisson, "On improving stability of the electric field integral equation at low frequencies," Proceedings of URSI Radio Science Meeting, Vol. 24, Los Angeles, CA, Jun. 1981. Google Scholar
108. Mautz, J. R. and R. F. Harrington, "An E-field solution for a conducting surface small or comparable to the wavelength," IEEE Trans. Antennas Propag., Vol. 32, No. 4, 330-339, 1984. Google Scholar
109. Wu, W.-L., A. W. Glisson, and D. Kajfez, "A study of two numerical solution procedures for the electric field integral equation at low frequency," Appl. Comput. Soc. J., Vol. 10, No. 3, 69-80, 1995. Google Scholar
110. Yla-Oijala, P. and M. Taskinen, "Well-conditioned M¨uller formulation for electromagnetic scattering by dielectric objects," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 3316-332, 2005. Google Scholar
111. Vecchi, G., "Loop-star decomposition of basis functions in the discretization of the EFIE," IEEE Trans. Antennas Propag., Vol. 47, No. 2, 339-346, 1999. Google Scholar
112. Andriulli, F. P., A. Tabacco, and G. Vecchi, "Solving the EFIE at low frequencies with a conditioning that grows only logarithmically with the number of unknowns," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1614-1623, 2010. Google Scholar
113. Chen, S. Y., W. C. Chew, J. M. Song, and J.-S. Zhao, "Analysis of low-frequency scattering from penetrable scatterers," IEEE Trans. Geosc. Remote Sensing, Vol. 39, No. 4, 726-735, 2001. Google Scholar
114. Yla-Oijala, P., S. P. Kiminki, and S. Jarvenpa, "Electromagnetic surface integral equation representations in terms of scalar functions," International Conference on Electromagnetics in Advanced Applications, Torino, Italy, Sep. 9-13, 2013. Google Scholar
115. Gulzow, V., "An integral equation method for the time-harmonic Maxwell equations with boundary conditions for the normal components," J. Integral Eq., Vol. 1, No. 3, 1988. Google Scholar
116. Stephanson, M. B. and J.-F. Lee, "Preconditioned electric field integral equation using Calderon identities and dual loop/star basis functions," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 1274-1279, 2009. Google Scholar
117. Bagci, H., F. P. Andriulli, K. Cools, F. Olyslager, and E. Michielssen, "A Caldern multiplicative preconditioner for the combined field integral equation," IEEE Trans. Antennas Propag., Vol. 57, No. 10, 3387-3392, 2009. Google Scholar
118. Cools, K., F. P. Andriulli, and E. Michielssen, "A Calderon multiplicative preconditioner for the PMCHWT integral equation," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4579-4587, 2011. Google Scholar
119. Begheim, Y., K. Cools, F. P. Andriulli, D. De Zutter, and E. Michielssen, "A Caldern multiplicative preconditioner for the PMCHWT equation for scattering by chiral objects," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4239-4248, 2012. Google Scholar
120. Jarvenpaa, S. and P. Yla-Oijala, "A global interpolator with low sample rate for multilevel fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1291-1300, 2013. Google Scholar
121. Gumerov, N. A. and R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, Elsevier, Amsterdam, The Netherlands, 2006.
122. Jarvenpa, S., J. Markkanen, and P. Yla-Oijala, "Broadband multilevel fast multipole algorithm for electric-magnetic current volume integral equation," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4393-4397, 2013. Google Scholar
123. Jiang, L. J. and W. C. Chew, "Low-frequency fast inhomogeneous plane-wave algorithm (LFFIPWA)," Microw. Opt. Techn. Lett., Vol. 40, No. 2, 117-122, 2004. Google Scholar
124. Darve., E. and P. Have, "A fast multipole method for Maxwell’s equations stable at all frequencies," Phil. Trans. Royal Society of London A, Vol. 362, No. 1816, 603-628, Mar. 2004. Google Scholar
125. Wallen, H. and J. Sarvas, "Translation procedures for broadband MLFMA," Progress In Electromagnetic Research, Vol. 55, 47-78, 2005. Google Scholar
126. Koc, S., J. Song, and W. C. Chew, "Error analysis for the numerical evaluation of the diagonal Error analysis for the numerical evaluation of the diagonal," SIAM J. Anal., Vol. 36, No. 3, 906-921, 1999. Google Scholar
127. Darve, E., "The fast multipole method: Numerical implementation," J. Comput. Phys., Vol. 160, 195-240, 2000. Google Scholar
128. Sarvas, J., "Performing interpolation and anterpolation entirely by fast Fourier transform in the 3-D multilevel fast multipole algorithm," SIAM J. Numer. Anal., Vol. 41, No. 6, 2180-2196, 2003. Google Scholar
129. Cecka, C. and E. Darve, "Fourier-based fast multipole method for the Helmholtz equation," SIAM J. Sci. Comput., Vol. 35, No. 1, A79-A103, 2013. Google Scholar
130. Jarvenpaa, S. and P. Yla-Oijala, "Multilevel fast multipole algorithm with local and global interpolators," 2013 IEEE International Symposium on Antennas and Propagation and USNCURSI National Radio Science Meeting, Orlando, Florida, USA, Jul. 7-13, 2013. Google Scholar
131. Ergul, O. and L. Grel, "A hierarchical partitioning strategy for an efficient parallelization of the multilevel fast multipole algorithm," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1740-1750, 2009. Google Scholar
132. Fostier, J. and F. Olyslager, "An asynchronous parallel MLFMA for scattering at multiple dielectric objects," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2346-2355, 2008. Google Scholar
133. Li, M. K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 130-138, 2007. Google Scholar
134. Lancellotti, V., B. P. de Hon, and A. G. Tijhuis, "An eigencurrent approach to the analysis of electrically large 3-D structures using linear embedding via Green’s operators," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3575-3585, 2009. Google Scholar
135. Peng, Z., X.-C. Wang, and J.-F. Lee, "Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects," IEEE Trans. Antennas Propag., Vol. 59, No. 9, 3328-3338, 2011. Google Scholar
136. Georgieva, N. K., S. Glavic, M. H. Bakr, and J. W. Bandler, "Feasible adjoint sensitivity technique for EM design optimization," IEEE Trans. Microw. Theory Techn., Vol. 50, No. 12, 2751-2758, 2002. Google Scholar
137. Nikolova, N. K., J. Zhu, D. Li, M. H. Bakr, and J. W. Bandler, "Sensitivity analysis of network parameters with electromagnetic frequency-domain simulators," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 2, 670-681, 2006. Google Scholar
138. Toivanen, J. I., R. A. E. Makinen, S. Jarvenpaa, P. Yla-Oijala, and J. Rahola, "Electromagnetic sensitivity analysis and shape optimization using method of moments and automatic differentiation," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 168-175, 2009. Google Scholar
139. Kataja, J. and J. I. Toivanen, "On shape differentiation of discretized electric field integral equation," Eng. Anal. Boundary Elem., Vol. 37, No. 9, 1197-1203, 2013. Google Scholar
140. Kataja, J., S. Jarvenpaa, and R. A. E. Makinen, "Shape sensitivity analysis of electrically large metallic electromagnetic scatterers," Opt-i, An International Conference on Engineering and Applied Sciences Optimization, Kos Island, Greece, Jun. 4-6, 2014. Google Scholar