Vol. 150
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-12-19
A Waveguide Verification Standard Design Procedure for the Microwave Characterization of Magnetic Materials
By
Progress In Electromagnetics Research, Vol. 150, 29-40, 2015
Abstract
A waveguide standard is introduced for validation purposes on the measurement accuracy of electric and magnetic properties of materials at microwave frequencies. The standard acts as a surrogate material with both electric and magnetic properties and is useful for verifying systems designed to characterize engineered materials using the Nicolson-Ross-Weir technique. A genetic algorithm is used to optimize the all-metallic structure to produce a surrogate with both relative permittivity and permeability within a target range across S-band. A mode-matching approach allows the user to predict the material properties with high accuracy, and thus compensate for differences in geometry due to loose fabrication tolerances or limited availability of component parts. The mode-matching method also allows the user to design standards that may be used within other measurement bands. An example standard is characterized experimentally, the errors due to uncertainties in measured dimensions and to experimental repeatability are explored, and the usefulness of the standard as a verification tool is validated.
Citation
Benjamin R. Crowgey, Junyan Tang, Edward J. Rothwell, Balasubramaniam Shanker, and Leo C. Kempel, "A Waveguide Verification Standard Design Procedure for the Microwave Characterization of Magnetic Materials," Progress In Electromagnetics Research, Vol. 150, 29-40, 2015.
doi:10.2528/PIER14100504
References

1. Dimiev, A., W. Lu, K. Zeller, B. Crowgey, L. C. Kempel, and J. M. Tour, "Low-loss, high-permittivity composites made from graphene nanoribbons," Applied Materials & Interfaces, Vol. 3, No. 12, 4657-4661, 2011.
doi:10.1021/am201071h

2. Shirakata, Y., N. Hidaka, M. Ishitsuka, A. Teramoto, and T. Ohmi, "High permeability and low loss Ni-Fe composite material for high-frequency applications," IEEE Trans. Magn., Vol. 44, No. 9, 2100-2106, 2008.
doi:10.1109/TMAG.2008.2001073

3. Verma, A., A. K. Saxena, and D. C. Dube, "Microwave permittivity and permeability of ferrite-polymer thick films," Journal of Magn. Magn. Mater., Vol. 263, 228-234, 2003.
doi:10.1016/S0304-8853(02)01569-X

4. Smith, F. C., "Effective permittivity of dielectric honeycombs," IEE Proc. Micro. Antennas Propag., Vol. 146, No. 1, 55-59, 1999.
doi:10.1049/ip-map:19990392

5. Kempel, L., B. Crowgey, and J. Xiao, "Radiation by conformal patch antennas on a magneto-dielectric, low-density material," 3rd Euro. Conf. on Antennas Propag., EuCAP, 2974-2976, 2009.

6. Damaskos, N. J., R. B. Mack, A. L. Maffett, W. Parmon, and P. L. Uslenghi, "The inverse problem for biaxial materials," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 4, 400-405, 1984.
doi:10.1109/TMTT.1984.1132689

7. Rothwell, E. J., A. K. Temme, and B. R. Crowgey, "Pulse reflection from a dielectric discontinuity in a rectangular waveguide," Progress In Electromagnetics Research, Vol. 97, 11-25, 2009.
doi:10.2528/PIER09090905

8. Dudeck, K. E. and L. J. Buckly, "Dielectric material measurement of thin samples at millimeter wavelengths," IEEE Trans. Instrum. Meas., Vol. 4, No. 5, 723-725, 1992.
doi:10.1109/19.177352

9. Queffelec, P., M. Le Floc’h, and P. Gelin, "Non-reciprocal cell for the broad-band measurement of tensorial permeability of magnetized ferrites: Direct problem," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 4, 1999.
doi:10.1109/22.754870

10. Lozano-Guerrero, A. J., F. J. Clemente-Fernandez, J. Monzo-Cabrera, J. L. Pedreno-Molina, and A. Diaz-Morcillo, "Precise evaluation of coaxial to waveguide transitions by means of inverse techniques," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 1, 229-235, 2010.
doi:10.1109/TMTT.2009.2036408

11. Williams, D. F., J. C. M. Wang, and U. Arz, "An optimal vector-network-analyzer calibration method," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 12, 2391-2401, 2003.
doi:10.1109/TMTT.2003.819211

12. StatistiCAL National Institute of Standards and Technology (NIST), Boulder, CO, available online at http://www.nist.gov/pml/electromagnetics/related-software.cfm, last accessed Oct. 15, 2014.

13. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

14. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382

15. Bogle, A., M. Havrilla, D. Nyquis, L. Kempel, and E. Rothwell, "Electromagnetic material characterization using a partially-filled rectangular waveguide," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 10, 1291-1306, 2005.
doi:10.1163/156939305775525909

16. Lambert, K. M. and C. L. Kory, "Notch filter insert for rectangular waveguide as a reference standard for material characterization," NASA Tech Briefs: LEW-18137-1, GlennResearch Center, Cleveland, OH, 2006.

17. Fenner, R. A., E. J. Rothwell, and L. L. Frasch, "A comprehensive analysis of free-space and guided-wave techniques for extracting the permeability and permittivity of materials using reflection-only measurements," Radio Sci., Vol. 47, No. 1, 1004-1016, 2012.
doi:10.1029/2011RS004755

18. Havrilla, M. J. and D. P. Nyquist, "Electromagnetic characterization of layered materials via direct and de-embed methods," IEEE Trans. Instrum. Meas., Vol. 55, No. 1, 158-163, 2006.
doi:10.1109/TIM.2005.861249

19. Ihamouten, A., K. Chahine, V. Baltazart, G. Villain, and X. Derobert, "On variants of the frequency power law for the electromagnetic characterization of hydraulic concrete," IEEE Trans. Instrum. Meas., Vol. 60, No. 11, 3658-3668, 2011.
doi:10.1109/TIM.2011.2138210

20. Crowgey, B. R., "Rectangular waveguide material characterization: anisotropic property extraction and measurement validation,", Ph.D. Dissertation, Michigan State University, East Lansing, MI, 2013.

21. Lamecki, P. K., P. K. Kozakowski, and M. Mrozowski, "Multimode, multiparametric surrogate models for fast design of waveguide components," 33rd European Microwave Conference, 1369-1372, Munich, Germany, 2003.

22. Rothwell, E. J. and M. J. Cloud, Electromagnetics, 2nd Edition, CRC Press, Boca Raton, FL, 2008.

23. Castro, J., C. Morales, T. Weller, J. Wang, and H. Srikanth, "Synthesis and characterization of low-loss Fe3O4-PDMS magneto-dielectric polymer nanocomposites for RF applications," IEEE 15th Annual Wireless and Microwave Technology Conference (WAMICON), 1-5, Tampa, FL, Jun. 6, 2014.

24. Ouedraogo, R., "Topology optimization of metamaterials and applications to RF component design,", Ph.D. Dissertation, Michigan State University, East Lansing, MI, 2011.

25. Crowgey, B. R., O. Tuncer, J. Tang, E. J. Rothwell, B. Shanker, L. C. Kempel, and M. J. Havrilla, "Characterization of biaxial anisotropic material using a reduced aperture waveguide," IEEE Trans. Instrum. Meas., Vol. 62, No. 10, 2739-2750, 2013.
doi:10.1109/TIM.2013.2259752

26. Dester, G. D., E. J. Rothwell, and M. J. Havrilla, "Two-iris method for the electromagnetic characterization of conductor-backed absorbing materials using an open-ended waveguide probe," IEEE Trans. Instrum. Meas., Vol. 61, No. 4, 1037-1044, 2012.
doi:10.1109/TIM.2011.2174111

27. Dorey, S. P., M. J. Havrilla, L. L. Frasch, C. Choi, and E. J. Rothwell, "Stepped-waveguide material-characterization technique," IEEE Antennas Propag. Mag., Vol. 46, No. 1, 170-175, 2004.
doi:10.1109/MAP.2004.1296183

28. Harrington, R. F., Time-harmonic Electromagnetic Fields, John Wiley & Sons, Inc., New York, 2001.
doi:10.1109/9780470546710