1. RamRakhyani, A. K., S. Mirabbasi, and M. Chiao, "Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants," IEEE Trans. Biomed. Circuits System, Vol. 5, No. 1, 48-63, 2011.
doi:10.1109/TBCAS.2010.2072782 Google Scholar
2. Zhu, N., R. W. Ziolkowski, and H. Xin, "A metamaterial-inspired, electrically small rectenna for high-efficiency, low power harvesting and scavenging at the global positioning system L1 frequency," Appl. Phys. Lett., Vol. 99, 114101, 2011.
doi:10.1063/1.3637045 Google Scholar
3. Rindorf, L., L. Lading, and O. Breinbjerg, "Resonantly coupled antennas for passive sensors," Proc. IEEE Sens., 1611-1614, 2008. Google Scholar
4. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
5. Huang, D., Y. Urzhumov, et al. "Magnetic superlens-enhanced inductive coupling for wireless power transfer,", arXiv:1204.0231v1, 2012. Google Scholar
6. Wang, B., T. Nishino, and K. H. Teo, "Wireless power transmission efficiency enhancement with metamaterials," 2010 IEEE International Conference on Wireless Information Technology and Systems (ICWITS), 1-4, 2010. Google Scholar
7. Wang, B., K. H. Teo, T. Nishino, et al. "Experiments on wireless power transfer with metamaterials," Applied Physics Letters, Vol. 98, No. 25, 254101, 2011.
doi:10.1063/1.3601927 Google Scholar
8. Wang, B. and K. H. Teo, "Wireless power transfer: Metamaterials and array of coupled resonators," Proceedings of the IEEE, Vol. 101, No. 6, 1359-1368, 2013.
doi:10.1109/JPROC.2013.2245611 Google Scholar
9. Rajagopalan, A. and A. K. RamRakhyani, "Improving power transfer efficiency of a short-range telemetry system using compact metamaterials," IEEE Transaction on Microwave Theory and Technique, Vol. 62, No. 4, 947-955, 2014.
doi:10.1109/TMTT.2014.2304927 Google Scholar
10. Ramahi, O. M., T. S. Almonee, and et al, "Metamaterial particles for electromagnetic energy harvesting," Applied Physics Letters, Vol. 101, 173903, 2012.
doi:10.1063/1.4764054 Google Scholar
11. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950 Google Scholar
12. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.
doi:10.1126/science.1125907 Google Scholar
13. Cummer, S. A., B. I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621 Google Scholar
14. Chen, H. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, 241105, 2007.
doi:10.1063/1.2748302 Google Scholar
15. Jiang, W. X., T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, and R. Liu, "Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces," Appl. Phys. Lett., Vol. 92, 264101, 2008.
doi:10.1063/1.2951485 Google Scholar
16. Rahm, M., D. Schurig, D. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations," Photo. Nano. Fund. Appl., Vol. 6, 87, 2008.
doi:10.1016/j.photonics.2007.07.013 Google Scholar
17. Chen, H., "Transformation optics in orthogonal coordinates," J. Opt. A: Pure Appl. Opt., Vol. 11, 075102, 2009.
doi:10.1088/1464-4258/11/7/075102 Google Scholar