1. Silva, M. W. B., S. E. Barbin, and L. C. Kretly, "Fabrication and testing of RF-MEMS switches using PCB techniques," 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 96-100, 2009.
doi:10.1109/IMOC.2009.5427624 Google Scholar
2. Valov, I., R. Waser, J. R. Jameson, and M. N. Kozicki, "Electrochemical metallization memories --- Fundamentals, applications, prospects," Nanotechnology, Vol. 22, 254003, 2011.
doi:10.1088/0957-4484/22/25/254003 Google Scholar
3. Derhacobian, N., S. C. Hollmer, N. Gilbert, and M. N. Kozicki, "Power and energy perspectives of nonvolatile memory technologies," Proceedings of the IEEE, Vol. 98, 283-298, 2010.
doi:10.1109/JPROC.2009.2035147 Google Scholar
4. Huang, G. M. and Y. Ho, "Memristors for non-volatile memory and other applications," Advances in Non-Volatile Memory and Storage Technology, Y. Nishi, Ed., Woodhead Publishing, 2014. Google Scholar
5. Shim, Y., G. Hummel, and M. Rais-Zadeh, "RF switches using phase change materials," 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 237-240, 2013.
doi:10.1109/MEMSYS.2013.6474221 Google Scholar
6. Crunteanu, A., A. Mennai, C. Guines, D. Passerieux, and P. Blondy, "Out-of-plane and inline RF switches based on Ge2Sb2Te5 phase-change material," IEEE MTT-S International Microwave Symposium (IMS), 1-4, Tampa Bay, Florida, US, 2014. Google Scholar
7. Kund, M., G. Beitel, C. U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, K. D. Ufert, and G. Muller, "Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm," IEEE International Electron Devices Meeting, IEDM Technical Digest, 754-757, 2005. Google Scholar
8. "The international technology roadmap for semiconductors (ITRS),", 2011, Available: http://www.itrs.net/. Google Scholar
9. Nessel, J. A., R. Q. Lee, C. H. Mueller, M. N. Kozicki, M. Ren, and J. Morse, "A novel nanoionics-based switch for microwave applications," 2008 IEEE MTT-S International Microwave Symposium Digest, 1051-1054, 2008.
doi:10.1109/MWSYM.2008.4633016 Google Scholar
10. Nessel, J. and R. Lee, "Chalcogenide nanoionic-based radio frequency switch,", Patent No. US8410469 B2, USA, 2013. Google Scholar
11. Vena, A., E. Perret, S. Tedjini, C. Vallee, P. Gonon, and C. Mannequin, "A fully passive RF switch based on nanometric conductive bridge," IEEE MTT-S International Microwave Symposium (IMS), 1-3, Montreal, Canada, 2012. Google Scholar
12. Russo, U., D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki, "Study of multilevel programming in programmable metallization cell (PMC) memory," IEEE Transactions on Electron Devices, Vol. 56, 1040-1047, 2009.
doi:10.1109/TED.2009.2016019 Google Scholar
13. Potember, R., T. Poehler, and D. Cowan, "Electrical switching and memory phenomena in CuTCNQ thin films," Applied Physics Letters, Vol. 34, 405-407, 1979.
doi:10.1063/1.90814 Google Scholar
14. Bernard, Y., V. Renard, P. Gonon, and V. Jousseaume, "Back-end-of-line compatible conductive bridging RAM based on Cu and SiO2," Microelectronic Engineering, Vol. 88, No. 5, 814-816, 2011.
doi:10.1016/j.mee.2010.06.041 Google Scholar
15. De Gans, B.-J., L. Xue, U. S. Agarwal, and U. S. Schubert, "Ink-jet printing of linear and star polymers," Macromolecular Rapid Communications, Vol. 26, 310-314, 2005.
doi:10.1002/marc.200400503 Google Scholar
16. Vianello, E., C. Cagli, G. Molas, E. Souchier, P. Blaise, C. Carabasse, G. Rodriguez, V. Jousseaume, B. De Salvo, F. Longnos, F. Dahmani, P. Verrier, D. Bretegnier, and J. Liebault, "On the impact of Ag doping on performance and reliability of GeS2-based conductive bridge memories," 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC), 278-281, 2012.
doi:10.1109/ESSDERC.2012.6343387 Google Scholar