Vol. 151
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-03-11
Realization of a Conductive Bridging RF Switch Integrated onto Printed Circuit Board
By
Progress In Electromagnetics Research, Vol. 151, 9-16, 2015
Abstract
This paper presents a new approach for the realization of RF switches based on the Conductive Bridging Random Access Memory technology (CBRAM). This promising approach allows the realization of RF switches in an extremely simple manner at low cost. For the first time, an RF switch based on a MIM structure is realized with an insulator layer obtained from a commonly used resin deposited by spin coating. The paper reports a RF switch based on CBRAM and demonstrates a device integration onto plastic circuit board (PCB). The realized switch is validated by experimental measurements for a frequency range up to 1.5 GHz with an activation voltage less than 1 V.
Citation
Etienne Perret, Thais Luana Vidal, Arnaud Vena, and Patrice Gonon, "Realization of a Conductive Bridging RF Switch Integrated onto Printed Circuit Board," Progress In Electromagnetics Research, Vol. 151, 9-16, 2015.
doi:10.2528/PIER14120403
References

1. Silva, M. W. B., S. E. Barbin, and L. C. Kretly, "Fabrication and testing of RF-MEMS switches using PCB techniques," 2009 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 96-100, 2009.
doi:10.1109/IMOC.2009.5427624

2. Valov, I., R. Waser, J. R. Jameson, and M. N. Kozicki, "Electrochemical metallization memories --- Fundamentals, applications, prospects," Nanotechnology, Vol. 22, 254003, 2011.
doi:10.1088/0957-4484/22/25/254003

3. Derhacobian, N., S. C. Hollmer, N. Gilbert, and M. N. Kozicki, "Power and energy perspectives of nonvolatile memory technologies," Proceedings of the IEEE, Vol. 98, 283-298, 2010.
doi:10.1109/JPROC.2009.2035147

4. Huang, G. M. and Y. Ho, "Memristors for non-volatile memory and other applications," Advances in Non-Volatile Memory and Storage Technology, Y. Nishi, Ed., Woodhead Publishing, 2014.

5. Shim, Y., G. Hummel, and M. Rais-Zadeh, "RF switches using phase change materials," 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), 237-240, 2013.
doi:10.1109/MEMSYS.2013.6474221

6. Crunteanu, A., A. Mennai, C. Guines, D. Passerieux, and P. Blondy, "Out-of-plane and inline RF switches based on Ge2Sb2Te5 phase-change material," IEEE MTT-S International Microwave Symposium (IMS), 1-4, Tampa Bay, Florida, US, 2014.

7. Kund, M., G. Beitel, C. U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, K. D. Ufert, and G. Muller, "Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable to sub 20 nm," IEEE International Electron Devices Meeting, IEDM Technical Digest, 754-757, 2005.

8. "The international technology roadmap for semiconductors (ITRS),", 2011, Available: http://www.itrs.net/.

9. Nessel, J. A., R. Q. Lee, C. H. Mueller, M. N. Kozicki, M. Ren, and J. Morse, "A novel nanoionics-based switch for microwave applications," 2008 IEEE MTT-S International Microwave Symposium Digest, 1051-1054, 2008.
doi:10.1109/MWSYM.2008.4633016

10. Nessel, J. and R. Lee, "Chalcogenide nanoionic-based radio frequency switch,", Patent No. US8410469 B2, USA, 2013.

11. Vena, A., E. Perret, S. Tedjini, C. Vallee, P. Gonon, and C. Mannequin, "A fully passive RF switch based on nanometric conductive bridge," IEEE MTT-S International Microwave Symposium (IMS), 1-3, Montreal, Canada, 2012.

12. Russo, U., D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki, "Study of multilevel programming in programmable metallization cell (PMC) memory," IEEE Transactions on Electron Devices, Vol. 56, 1040-1047, 2009.
doi:10.1109/TED.2009.2016019

13. Potember, R., T. Poehler, and D. Cowan, "Electrical switching and memory phenomena in CuTCNQ thin films," Applied Physics Letters, Vol. 34, 405-407, 1979.
doi:10.1063/1.90814

14. Bernard, Y., V. Renard, P. Gonon, and V. Jousseaume, "Back-end-of-line compatible conductive bridging RAM based on Cu and SiO2," Microelectronic Engineering, Vol. 88, No. 5, 814-816, 2011.
doi:10.1016/j.mee.2010.06.041

15. De Gans, B.-J., L. Xue, U. S. Agarwal, and U. S. Schubert, "Ink-jet printing of linear and star polymers," Macromolecular Rapid Communications, Vol. 26, 310-314, 2005.
doi:10.1002/marc.200400503

16. Vianello, E., C. Cagli, G. Molas, E. Souchier, P. Blaise, C. Carabasse, G. Rodriguez, V. Jousseaume, B. De Salvo, F. Longnos, F. Dahmani, P. Verrier, D. Bretegnier, and J. Liebault, "On the impact of Ag doping on performance and reliability of GeS2-based conductive bridge memories," 2012 Proceedings of the European Solid-State Device Research Conference (ESSDERC), 278-281, 2012.
doi:10.1109/ESSDERC.2012.6343387