1. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature Mater., Vol. 8, 568, 2009.
doi:10.1038/nmat2461 Google Scholar
2. Leonhardt, U. and T. Tyc, "Broadband invisibility by non-euclidean cloaking," Science, Vol. 323, 110-112, 2009.
doi:10.1126/science.1166332 Google Scholar
3. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express, Vol. 14, 9794-9804, 2006.
doi:10.1364/OE.14.009794 Google Scholar
4. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic field," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907 Google Scholar
5. Chen, H., B. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
doi:10.1103/PhysRevLett.99.063903 Google Scholar
6. Smith, D. R., Y. Urzhumov, N. B. Kundtz, and N. I. Landy, "Enhancing imaging systems using transformation optics," Opt. Express, Vol. 18, 21238, 2010.
doi:10.1364/OE.18.021238 Google Scholar
7. Cummer, S. A., B. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621 Google Scholar
8. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901 Google Scholar
9. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
10. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493 Google Scholar
11. Kwon, D.-H. and D. H. Werner, "Transformation electromagnetics: An overview of the theory and applications," IEEE Antennas and Propagation Magazine, Vol. 52, No. 1, 24-46, 2010.
doi:10.1109/MAP.2010.5466396 Google Scholar
12. Yang, R., W. Tang, and Y. Hao, "A broadband zone plate lens from transformation optics," Opt. Express, Vol. 19, No. 13, 12348-12355, 2011.
doi:10.1364/OE.19.012348 Google Scholar
13. Ruan, Z. and S. Fan, "Superscattering of light from subwavelength nanostructures," Phys. Rev. Lett., Vol. 105, 013901, 2010.
doi:10.1103/PhysRevLett.105.013901 Google Scholar
14. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, 337-339, 2010.
doi:10.1126/science.1186351 Google Scholar
15. Chen, H. Y. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, 241105, 2007.
doi:10.1063/1.2748302 Google Scholar
16. Leonhardt, U. and T. G. Philbin, "Transformation optics and the geometry of light," Prog. Opt., Vol. 53, 69-152, 2009.
doi:10.1016/S0079-6638(08)00202-3 Google Scholar
17. Chen, H., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nature Mater., Vol. 9, 387-396, 2010.
doi:10.1038/nmat2743 Google Scholar
18. Huidobro, P. A., M. L. Nesterov, L. Martin-Moreno, and F. J. Garcia-Vidal, "Transformation optics for plasmonics," Nano Lett., Vol. 10, 1985-1990, 2010.
doi:10.1021/nl100800c Google Scholar
19. Edwards, B., A. Alu, M. G. Silveirinha, and N. Engheta, "Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials," Phys. Rev. Lett., Vol. 103, 153901, 2009.
doi:10.1103/PhysRevLett.103.153901 Google Scholar
20. Alu, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, 016623, 2005.
doi:10.1103/PhysRevE.72.016623 Google Scholar
21. Luo, Y., J. Zhang, H. Chen, S. Xi, and B.-I. Wu, "Cylindrical cloak with axial permittivity/permeability spatially invariant," Appl. Phys. Lett., Vol. 93, 033504, 2008.
doi:10.1063/1.2953433 Google Scholar
22. Xi, S., H. Chen, B. Zhang, B.-I. Wu, and J. A. Kong, "Route to low-scattering cylindrical cloaks with finite permittivity and permeability," Phys. Rev. B, Vol. 79, 155122, 2010. Google Scholar
23. Alu, A., A. D. Yaghijan, R. A. Shore, and M. G. Silveirinha, "Causality relations in the homogenization of metamaterials," Phys. Rev. B, Vol. 84, 054305, 2011.
doi:10.1103/PhysRevB.84.054305 Google Scholar
24. Cheng, Q., T. Cui, W. Jiang, and B. Cai, "An omnidirectional electromagnetic absorber made of metamaterials," New J. Phys., Vol. 12, 063006, 2010.
doi:10.1088/1367-2630/12/6/063006 Google Scholar
25. Zentgraf, T., Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, "Plasmonic Luneburg and Eaton lenses," Nature Nano., Vol. 6, 151-155, 2011.
doi:10.1038/nnano.2010.282 Google Scholar
26. Narimanov, E. E. and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Appl. Phys. Lett., Vol. 95, 041106, 2009.
doi:10.1063/1.3184594 Google Scholar
27. Gong, Y. X., L. Zhen, J. T. Jiang, C. Y. Xu, and W. Z. Shao, "Synthesis and microwave electromagnetic properties of CoFe alloy nanoflakes prepared with hydrogen-thermal reduction method," J. Appl. Phys., Vol. 106, 064302, 2009.
doi:10.1063/1.3211987 Google Scholar
28. Zhen, L., Y. X. Gong, J. T. Jiang, C. Y. Xu, W. Z. Shao, P. Liu, and J. Tang, "Synthesis of CoFe/Al2O3 composite nanoparticles as the impedance matching layer of wideband multilayer absorber," J. Appl. Phys., Vol. 109, 07A332, 2011.
doi:10.1063/1.3564939 Google Scholar
29. Tretyakov, S., P. Alitalo, O. Luukkonen, and C. Simovski, "Broadband electromagnetic cloaking of long cylindrical objects," Phys. Rev. Lett., Vol. 103, 103905, 2009.
doi:10.1103/PhysRevLett.103.103905 Google Scholar
30. Alitalo, P. and S. A. Tretyakov, "Electromagnetic cloaking of strongly scattering cylindrical objects by a volumetric structure composed of conical metal plates," Phys. Rev. B, Vol. 82, 245111, 2010.
doi:10.1103/PhysRevB.82.245111 Google Scholar
31. Vehmas, J., P. Alitalo, and S. A. Tretyakov, "Experimental demonstration of antenna blockage reduction with a transmission-line cloak," IET Microwaves, Antennas & Propagation, Vol. 6, No. 7, 830-834, 2012.
doi:10.1049/iet-map.2011.0509 Google Scholar
32. De Bellis, G., I. M. De Rosa, A. Dinescu, M. S. Sarto, and A. Tamburrano, "Electromagnetic absorbing nanocomposites including carbon fibers, nanotubes and graphene nanoplatelets," 2010 IEEE International Symposium on Electromagnetic Compatibility (EMC), 202-207, 2010.
doi:10.1109/ISEMC.2010.5711272 Google Scholar
33. Tellakula, R. A., V. K. Varadan, T. C. Shami, and G. N. Mathur, "Carbon fiber and nanotube based composites with polypyrrole fabric as electromagnetic absorbers," Smart Mater. Struct., Vol. 13, 1040-1044, 2004.
doi:10.1088/0964-1726/13/5/009 Google Scholar
34. Zhou, Y. and R. Mittra, "Performance enhancement of RF absorbers by using resistively-loaded periodic screens," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, Jul. 8-14, 2012. Google Scholar
35. Mittra, R. and Y. Zhou, "Designing cloaks and absorbing blankets for scattering reduction using field and impedance transformation techniques," Computational Electromagnetics, Recent Advances and Engineering Applications, Chapter 14, R. Mittra, Ed., Springer, 2014, ISBN 978-1-4614-4381-0. Google Scholar
36. Ozgun, O. and M. Kuzuoglu, "Electromagnetic metamorphosis: Reshaping scatterers via conformal anisotropic metamaterial coatings," Microwave Opt. Technol. Lett., Vol. 49, 2386-2392, 2007.
doi:10.1002/mop.22784 Google Scholar
37. Ozgun, O. and M. Kuzuoglu, "Utilization of anisotropic metamaterial layers in waveguide miniaturization and transitions," IEEE Microwave and Wireless Components Letters, Vol. 17, 754-756, 2007.
doi:10.1109/LMWC.2007.908039 Google Scholar
38. Teixeira, F. L., "Closed-form metamaterial blueprints for electromagnetic masking of arbitrarily shaped convex PEC objects," IEEE Antennas Wireless Propagat. Lett., Vol. 6, 163-164, 2007.
doi:10.1109/LAWP.2007.894153 Google Scholar
39. Qing, Y., W. Zhou, S. Huang, Z. Huang, F. Luo, and D. Zhu, "Evolution of double magnetic resonance behavior and electromagnetic properties of flake carbonyl iron and multi-walled carbon nanotubes filled epoxy-silicone," Journal of Alloys and Compounds, Vol. 583, 471-475, 2014.
doi:10.1016/j.jallcom.2013.09.002 Google Scholar
40. Haupt, R. L. and D. H. Werner, Genetic Algorithms in Electromagnetics, John Wiley & Sons, 2007.
doi:10.1002/047010628X
41. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770
42. Argyropoulos, C., E. Kallos, Y. Zhao, and Y. Hao, "Manipulating the loss in electromagnetic cloaks for perfect wave absorption," Opt. Express, Vol. 17, 8467-8475, 2009.
doi:10.1364/OE.17.008467 Google Scholar
43. Argyropoulos, C., E. Kallos, and Y. Hao, "FDTD analysis of the optical black hole," J. Opt. Soc. Am. B, Vol. 27, 2020-2025, 2010.
doi:10.1364/JOSAB.27.002020 Google Scholar
44. Kwon, D.-H., "Transformation electromagnetics and optics," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 1, 2014. Google Scholar