Department of Electrical and Computer Engineering
The University of Texas at Austin
USA
HomepageDepartment of Electrical and Computer Engineering
The University of Texas at Austin
USA
Homepage1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
doi:10.1002/0471754323
2. Eleftheriades, G. V. and K. G. Balmain, Negative-refraction Metamaterials: Fundamental Principles and Applications, John Wiley & Sons, 2005.
doi:10.1002/0471744751
3. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006.
4. Sarychev, A. K. and V. M. Shalaev, Electrodynamics of Metamaterials, World Scientific, 2007.
5. Cai, W. and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, 2009.
6. Cui, T. J., D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, Springer, 2009.
7. Capolino, F., Theory and Phenomena of Metamaterials, CRC Press, 2009.
doi:10.1201/9781420054262
8. Capolino, F., Applications of Metamaterials, CRC Press, 2009.
doi:10.1201/9781420054248
9. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, John Wiley & Sons, 2011.
10. Shvets, G. and I. Tsukerman, Plasmonics and Plasmonic Metamaterials: Analysis and Applications, World Scientific, 2012.
11. Craster, R. V. and S. Guenneau, Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, Springer, 2012.
12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, Apr. 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
13. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
14. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
15. Pendry, J., "Optics: Positively negative," Nature, Vol. 423, No. 6935, 22-23, May 2003.
doi:10.1038/423022a Google Scholar
16. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, Aug. 2004.
doi:10.1126/science.1096796 Google Scholar
17. Noginov, M. A., H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, "Controlling spontaneous emission with metamaterials," Opt. Lett., Vol. 35, No. 11, 1863-1865, Jun. 2010.
doi:10.1364/OL.35.001863 Google Scholar
18. Jacob, Z., J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, "Engineering photonic density of states using metamaterials," Appl. Phys. B, Vol. 100, No. 1, 215-218, Jul. 2010.
doi:10.1007/s00340-010-4096-5 Google Scholar
19. Alu, A. and N. Engheta, "Boosting molecular fluorescence with a plasmonic nanolauncher," Phys. Rev. Lett., Vol. 103, No. 4, 043902, Jul. 2009.
doi:10.1103/PhysRevLett.103.043902 Google Scholar
20. Fleury, R. and A. Alu, "Enhanced superradiance in epsilon-near-zero plasmonic channels," Phys. Rev. B, Vol. 87, No. 20, 201101, May 2013.
doi:10.1103/PhysRevB.87.201101 Google Scholar
21. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Phys. Rev. Lett., Vol. 97, No. 15, 157403, Oct. 2006.
doi:10.1103/PhysRevLett.97.157403 Google Scholar
22. Edwards, B., A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Phys. Rev. Lett., Vol. 100, No. 3, 033903, Jan. 2008.
doi:10.1103/PhysRevLett.100.033903 Google Scholar
23. Fleury, R. and A. Alu, "Extraordinary sound transmission through density-near-zero ultranarrow channels," Phys. Rev. Lett., Vol. 111, No. 5, 055501, Jul. 2013.
doi:10.1103/PhysRevLett.111.055501 Google Scholar
24. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Prop., Vol. 51, No. 10, 2558-2571, Oct. 2003.
doi:10.1109/TAP.2003.817553 Google Scholar
25. Alu, A., G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, "Plasmonic brewster angle: Broadband extraordinary transmission through optical gratings," Phys. Rev. Lett., Vol. 106, No. 12, 123902, Mar. 2011.
doi:10.1103/PhysRevLett.106.123902 Google Scholar
26. Kerker, M., "Invisible bodies," J. Opt. Soc. Am., Vol. 65, No. 4, 376-379, Apr. 1975.
doi:10.1364/JOSA.65.000376 Google Scholar
27. Chew, H. and M. Kerker, "Abnormally low electromagnetic scattering cross sections," J. Opt. Soc. Am., Vol. 66, No. 5, 445-449, May 1976.
doi:10.1364/JOSA.66.000445 Google Scholar
28. Hertz, P., "Die Bewegung eines Elektrons unter dem Einflusse einer stets gleich gerichteten Kraft," Math. Ann., Vol. 65, No. 1, 1-86, Mar. 1907.
doi:10.1007/BF01450051 Google Scholar
29. Bohm, D. and M. Weinstein, "The self-oscillations of a charged particle," Phys. Rev., Vol. 74, No. 12, 1789-1798, Dec. 1948.
doi:10.1103/PhysRev.74.1789 Google Scholar
30. Goedecke, G. H., "Classically radiationless motions and possible implications for quantum theory," Phys. Rev., Vol. 135, No. 1B, B281-B288, Jul. 1964.
doi:10.1103/PhysRev.135.B281 Google Scholar
31. Hoenders, B. J., "Existence of invisible nonscattering objects and nonradiating source," J. Opt. Soc. Am. A, Vol. 14, No. 1, 262-266, Jan. 1997.
doi:10.1364/JOSAA.14.000262 Google Scholar
32. Boardman, A. D., K. Marinov, N. Zheludev, and V. A. Fedotov, "Dispersion properties of nonradiating configurations: Finite-difference time-domain modeling," Phys. Rev. E, Vol. 72, No. 3, 036603, Sep. 2005. Google Scholar
33. Kahn, W. K. and H. Kurss, "Minimum-scattering antennas," IEEE Trans. Antennas Prop., Vol. 13, No. 5, 671-675, 1965. Google Scholar
34. Alexopoulos, N. G. and N. K. Uzunoglu, "Electromagnetic scattering from active objects: Invisible scatterers," Applied Optics, Vol. 17, No. 2, 235-239, 1978. Google Scholar
35. Kildal, P.-S., A. A. Kishk, and A. Tengs, "Reduction of forward scattering from cylindrical objects using hard surfaces," IEEE Trans. Antennas Prop., Vol. 44, No. 11, 1509-1520, 1996. Google Scholar
36. Devaney, A. J. and G. Sherman, "Nonuniqueness in inverse source and scattering problems," IEEE Trans. Antennas Prop., Vol. 30, No. 5, 1034-1037, 1982. Google Scholar
37. Devaney, A. J., "Nonuniqueness in the inverse scattering problem," Journal of Mathematical Physics, Vol. 19, No. 7, 1526-1531, Aug. 2008. Google Scholar
38. Greenleaf, A., M. Lassas, and G. Uhlmann, "On nonuniqueness for Calder´on’s inverse problem," Mathematical Research Letters, Vol. 10, No. 5, 685-693, 2003. Google Scholar
39. Greenleaf, A., M. Lassas, and G. Uhlmann, "Anisotropic conductivities that cannot be detected by EIT," Physiol. Meas., Vol. 24, No. 2, 413, May 2003. Google Scholar
40. Monticone, F. and A. Alu, "Do cloaked objects really scatter less?," Phys. Rev. X, Vol. 3, No. 4, 041005, Oct. 2013. Google Scholar
41. Monticone, F. and A. Alu, "On the physical bounds of cloaking and invisibility," 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics --- Metamaterials 2013, Bordeaux, France, Sep. 16-21, 2013. Google Scholar
42. Tamm, I. Y., "Electrodynamics of an anisotropic medium in the special theory of relativity," J. Russ. Phys. Chem. Soc., Vol. 56, 248, 1924 (in Russian). Google Scholar
43. Tamm, I. Y., "Crystal-optics of the theory of relativity pertinent to the geometry of a bi-quadratic form," J. Russ. Phys. Chem. Soc., Vol. 56, 1, 1925 (in Russian). Google Scholar
44. Van Dantzig, D., "The fundamental equations of electromagnetism, independent of metrical geometry," Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 30, No. 04, 421-421, 1934. Google Scholar
45. Dolin, L. S., "On a possibility of comparing three-dimensional electromagnetic systems with inhomogeneous filling," Izv. Vyssh. Uchebn. Zaved., Radiofiz., Vol. 4, 964-967, 1961. Google Scholar
46. Post, E. G., Formal Structure of Electromagnetics: General Covariance and Electromagnetics, Interscience Publishers, New York, 1962.
47. Lax, M. and D. F. Nelson, "Maxwell equations in material form," Phys. Rev. B, Vol. 13, No. 4, 1777-1784, Feb. 1976. Google Scholar
48. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell’s equations," Journal of Modern Optics, Vol. 43, No. 4, 773-793, 1996. Google Scholar
49. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," Journal of Mathematical Physics, Vol. 40, No. 1, 169-187, Jan. 1999. Google Scholar
50. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 665-686, 1999. Google Scholar
51. Leonhardt, U., "Notes on waves with negative phase velocity," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 9, No. 1, 102-105, 2003. Google Scholar
52. Chen, H., B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, "Design and experimental realization of a broadband transformation media field rotator at microwave frequencies," Phys. Rev. Lett., Vol. 102, No. 18, 183903, May 2009. Google Scholar
53. Schurig, D., J. B. Pendry, and D. R. Smith, "Transformation-designed optical elements," Opt. Express, Vol. 15, No. 22, 14772-14782, Oct. 2007. Google Scholar
54. Liu, Y., T. Zentgraf, G. Bartal, and X. Zhang, "Transformational plasmon optics," Nano Lett., Vol. 10, No. 6, 1991-1997, Jun. 2010. Google Scholar
55. Alu, A., F. Bilotti, and L. Vegni, "Generalized transmission line equations for bianisotropic materials," IEEE Trans. Antennas Prop., Vol. 51, No. 11, 3134-3141, Nov. 2003. Google Scholar
56. Alu, A., F. Bilotti, and L. Vegni, "Method of lines numerical analysis of conformal antenna," IEEE Trans. Antennas Prop., Vol. 52, No. 6, 1530-1540, Jun. 2004. Google Scholar
57. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, Jun. 2006. Google Scholar
58. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, Jun. 2006. Google Scholar
59. Shalaev, V. M., "Transforming light," Science, Vol. 322, No. 5900, 384-386, Oct. 2008. Google Scholar
60. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Cloaking devices, electromagnetic wormholes, and transformation optics," SIAM Review, Vol. 51, No. 1, 3-33, Feb. 2009. Google Scholar
61. Chen, H., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nat. Mater., Vol. 9, No. 5, 387-396, May 2010. Google Scholar
62. Zhang, B., "Electrodynamics of transformation-based invisibility cloaking," Light Sci. Appl., Vol. 1, No. 10, e32, Oct. 2012. Google Scholar
63. Leonhardt, U., "To invisibility and beyond," Nature, Vol. 471, No. 7338, 292-293, Mar. 2011. Google Scholar
64. Wood, B., "Metamaterials and invisibility," Comptes Rendus Physique, Vol. 10, No. 5, 379-390, Jun. 2009. Google Scholar
65. Sheng, P., "Waves on the Horizon," Science, Vol. 313, No. 5792, 1399-1400, Sep. 2006. Google Scholar
66. Leonhardt, U., "Notes on conformal invisibility devices," New J. Phys., Vol. 8, No. 7, 118, Jul. 2006. Google Scholar
67. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express, Vol. 14, No. 21, 9794-9804, Oct. 2006. Google Scholar
68. Leonhardt, U. and T. G. Philbin, "General relativity in electrical engineering," New J. Phys., Vol. 8, No. 10, 247, Oct. 2008. Google Scholar
69. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 7, No. 4, 036621, Sep. 2006. Google Scholar
70. Zolla, F., S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett., Vol. 32, No. 9, 1069-1071, May 2007. Google Scholar
71. Ruan, Z., M. Yan, C. W. Neff, and M. Qiu, "Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations," Phys. Rev. Lett., Vol. 99, No. 11, 113903, Sep. 2007. Google Scholar
72. Chen, H., B.-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, No. 6, 063903, Aug. 2007. Google Scholar
73. Zhang, B., H. Chen, B.-I.Wu, Y. Luo, L. Ran, and J. A. Kong, "Response of a cylindrical invisibility cloak to electromagnetic waves," Phys. Rev. B, Vol. 76, No. 12, 121101, Sep. 2007. Google Scholar
74. Yaghjian, A. D. and S. Maci, "Alternative derivation of electromagnetic cloaks and concentrators," New J. Phys., Vol. 10, No. 11, 115022, Dec. 2008. Google Scholar
75. Perczel, J., T. Tyc, and U. Leonhardt, "Invisibility cloaking without superluminal propagation," New J. Phys., Vol. 13, No. 8, 083007, Aug. 2011. Google Scholar
76. Sihvola, A., S. Tretyakov, and A. de Baas, "Metamaterials with extreme material parameters," J. Commun. Technol. Electron., Vol. 52, No. 9, 986-990. Google Scholar
77. Alu, A. and N. Engheta, "Extremely anisotropic boundary conditions and their optical applications," Radio Science, Special Issue for URSI EMTS 2010, Vol. 46, RS0E11, Sep. 2011. Google Scholar
78. Alu, A. and N. Engheta, "Optical nanoswitch: An engineered plasmonic nanoparticle with extreme parameters and giant anisotropy," New J. Phys., Vol. 11, No. 1, 013026, Jan. 2009. Google Scholar
79. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, No. 15, 155410. Google Scholar
80. Alu, A., M. G. Silveirinha, and N. Engheta, "Transmission-line analysis of ε-near-zero–filled narrow channels," Phys. Rev. E, Vol. 78, No. 1, 016604, Jul. 2008. Google Scholar
81. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E, Vol. 70, No. 4, 046608, Oct. 2004. Google Scholar
82. Alu, A. and N. Engheta, "Coaxial-to-waveguide matching with -near-zero ultranarrow channels and bends," IEEE Trans. Antennas Prop., Vol. 58, No. 2, 328-339, 2010. Google Scholar
83. Alu, A. and N. Engheta, "Optical ‘shorting wires’," Opt. Express, Vol. 15, No. 21, 13773-13782, Oct. 2007. Google Scholar
84. Liu, R., Q. Cheng, T. Hand, J. J.Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies," Phys. Rev. Lett., Vol. 100, No. 2, 023903, Jan. 2008. Google Scholar
85. Choi, M., S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature, Vol. 470, No. 7334, 369-373, Feb. 2011. Google Scholar
86. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, Nov. 2006. Google Scholar
87. Kante, B., D. Germain, and A. de Lustrac, "Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies," Phys. Rev. B, Vol. 80, No. 20, 201104, Nov. 2009. Google Scholar
88. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photon., Vol. 1, No. 4, 224-227, Apr. 2007. Google Scholar
89. Cai, W., U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Applied Physics Letters, Vol. 91, No. 11, 111105, Sep. 2007. Google Scholar
90. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express, Vol. 16, No. 8, 5444-5452, Apr. 2008. Google Scholar
91. Yan, M., Z. Ruan, and M. Qiu, "Cylindrical invisibility cloak with simplified material parameters is inherently visible," Phys. Rev. Lett., Vol. 99, No. 23, 233901, Dec. 2007. Google Scholar
92. Chen, H., X. Luo, H. Ma, and C. T. Chan, "The anti-cloak," Opt. Express, Vol. 16, No. 19, 14603-14608, Sep. 2008. Google Scholar
93. Castaldi, G., I. Gallina, V. Galdi, A. Al`u, and N. Engheta, "Analytical study of spherical cloak/anti-cloak interactions," Wave Motion, Vol. 48, No. 6, 455-467, Sep. 2011. Google Scholar
94. Castaldi, G., I. Gallina, V. Galdi, A. Alu, and N. Engheta, "Cloak/anti-cloak interactions," Opt. Express, Vol. 17, No. 5, 3101-3114, Mar. 2009. Google Scholar
95. Leonhardt, U. and T. Tyc, "Broadband invisibility by non-euclidean cloaking," Science, Vol. 323, No. 5910, 110-112, Jan. 2009. Google Scholar
96. Hendi, A., J. Henn, and U. Leonhardt, "Ambiguities in the scattering tomography for central potentials," Phys. Rev. Lett., Vol. 97, No. 7, 073902, Aug. 2006. Google Scholar
97. Halimeh, J. C. and M. Wegener, "Time-of-flight imaging of invisibility cloaks," Opt. Express, Vol. 20, No. 1, 63-74, Jan. 2012. Google Scholar
98. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, No. 20, 203901, Nov. 2008. Google Scholar
99. Dolling, G., M. Wegener, S. Linden, and C. Hormann, "Photorealistic images of objects in effective negative-index materials," Opt. Express, Vol. 14, No. 5, 1842-1849, Mar. 2006. Google Scholar
100. Halimeh, J. C., T. Ergin, J. Mueller, N. Stenger, and M. Wegener, "Photorealistic images of carpet cloaks," Opt. Express, Vol. 17, No. 22, 19328-19336, Oct. 2009. Google Scholar
101. Ergin, T., J. C. Halimeh, N. Stenger, and M. Wegener, "Optical microscopy of 3D carpet cloaks: Ray-tracing calculations," Opt. Express, Vol. 18, No. 19, 20535-20545, Sep. 2010. Google Scholar
102. Danner, A. J., "Visualizing invisibility: Metamaterials-based optical devices in natural environments," Opt. Express, Vol. 18, No. 4, 3332-3337, Feb. 2010. Google Scholar
103. Halimeh, J. C. and M. Wegener, "Photorealistic ray tracing of free-space invisibility cloaks made of uniaxial dielectrics," Opt. Express, Vol. 20, No. 27, 28330-28340, Dec. 2012. Google Scholar
104. Halimeh, J. C. and M. Wegener, "Photorealistic rendering of unidirectional free-space invisibility cloaks," Opt. Express, Vol. 21, No. 8, 9457-9472, Apr. 2013. Google Scholar
105. Zhang, B., T. Chan, and B.-I. Wu, "Lateral shift makes a ground-plane cloak detectable," Phys. Rev. Lett., Vol. 104, No. 23, 233903, Jun. 2010. Google Scholar
106. Landy, N. I., N. Kundtz, and D. R. Smith, "Designing three-dimensional transformation optical media using quasiconformal coordinate transformations," Phys. Rev. Lett., Vol. 105, No. 19, 193902, Nov. 2010. Google Scholar
107. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, No. 5912, 366-369, Jan. 2009. Google Scholar
108. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Mater., Vol. 8, No. 7, 568-571, Jul. 2009. Google Scholar
109. Lee, J. H., J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, "Direct visualization of optical frequency invisibility cloak based on silicon nanorod array," Opt. Express, Vol. 17, No. 15, 12922-12928, Jul. 2009. Google Scholar
110. Gabrielli, L. H., J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Photon., Vol. 3, No. 8, 461-463, Aug. 2009. Google Scholar
111. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, No. 5976, 337-339, Apr. 2010. Google Scholar
112. Ma, H. F. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nat. Commun., Vol. 1, 21, Jun. 2010. Google Scholar
113. Gharghi, M., C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, "A carpet cloak for visible light," Nano Lett., Vol. 11, No. 7, 2825-2828, Jul. 2011. Google Scholar
114. Shin, D., Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, "Broadband electromagnetic cloaking with smart metamaterials," Nat. Commun., Vol. 3, 1213, Nov. 2012. Google Scholar
115. Smolyaninov, I. I., V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, "Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking," Phys. Rev. Lett., Vol. 102, No. 21, 213901, May 2009. Google Scholar
116. Luo, Y., J. Zhang, H. Chen, L. Ran, B.-I. Wu, and J.-A. Kong, "A rigorous analysis of plane-transformed invisibility cloaks," IEEE Trans. Antennas Prop., Vol. 57, No. 12, 3926-3933, 2009. Google Scholar
117. Xi, S., H. Chen, B.-I. Wu, and J.-A. Kong, "One-directional perfect cloak created with homogeneous material," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 3, 131-133, 2009. Google Scholar
118. Zhang, B., Y. Luo, X. Liu, and G. Barbastathis, "Macroscopic invisibility cloak for visible light," Phys. Rev. Lett., Vol. 106, No. 3, 033901, Jan. 2011. Google Scholar
119. Chen, X., Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, "Macroscopic invisibility cloaking of visible light," Nat. Commun., Vol. 2, 176, Feb. 2011. Google Scholar
120. Liang, D., J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, "Robust large dimension terahertz cloaking," Advanced Materials, Vol. 24, No. 7, 916-921, 2012. Google Scholar
121. Chen, H. and B. Zheng, "Broadband polygonal invisibility cloak for visible light," Sci. Rep., Vol. 2, 255, 2012. Google Scholar
122. Landy, N. and D. R. Smith, "A full-parameter unidirectional metamaterial cloak for microwaves," Nat. Mater., Vol. 12, No. 1, 25-28, Jan. 2013. Google Scholar
123. Urzhumov, Y., N. Landy, T. Driscoll, D. Basov, and D. R. Smith, "Thin low-loss dielectric coatings for free-space cloaking," Opt. Lett., Vol. 38, No. 10, 1606-1608, May 2013. Google Scholar
124. Chen, H., B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nat. Commun., Vol. 4, Oct. 2013. Google Scholar
125. Howell, J. C. and J. B. Howell, "Simple, broadband, optical spatial cloaking of very large objects,", arXiv e-print 1306.0863, Jun. 2013. Google Scholar
126. Houdin, R., The Secrets of Stage Conjuring, Wildside Press LLC, 2008.
127. Wood, B. and J. B. Pendry, "Metamaterials at zero frequency," J. Phys.: Condens. Matter, Vol. 19, No. 7, 076208, Feb. 2007. Google Scholar
128. Sanchez, A., C. Navau, J. Prat-Camps, and D.-X. Chen, "Antimagnets: Controlling magnetic fields with superconductor–metamaterial hybrids," New J. Phys., Vol. 13, No. 9, 093034, Sep. 2011. Google Scholar
129. Narayana, S. and Y. Sato, "DC magnetic cloak," Advanced Materials, Vol. 24, No. 1, 71-74, 2012. Google Scholar
130. Gomory, F., M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, "Experimental realization of a magnetic cloak," Science, Vol. 335, No. 6075, 1466-1468, Mar. 2012. Google Scholar
131. Souc, J., M. Solovyov, F. Gomory, J. Prat-Camps, C. Navau, and A. Sanchez, "A quasistatic magnetic cloak," New J. Phys., Vol. 15, No. 5, 053019, May 2013. Google Scholar
132. Yang, F., Z. L. Mei, T. Y. Jin, and T. J. Cui, "dc electric invisibility cloak," Phys. Rev. Lett., Vol. 109, No. 5, 053902, Aug. 2012. Google Scholar
133. Liu, M., Z. L. Mei, X. Ma, and T. J. Cui, "dc illusion and its experimental verification," Applied Physics Letters, Vol. 101, No. 5, 051905, Aug. 2012. Google Scholar
134. Mei, Z. L., Y. S. Liu, F. Yang, and T. J. Cui, "A dc carpet cloak based on resistor networks," Opt. Express, Vol. 20, No. 23, 25758-25765, Nov. 2012. Google Scholar
135. Alu, A. and N. Engheta, "Effects of size and frequency dispersion in plasmonic cloaking," Phys. Rev. E, Vol. 78, No. 4, 045602, Oct. 2008. Google Scholar
136. Papas, C. H., Theory of Electromagnetic Wave Propagation, Courier Dover Publications, 2013.
137. Jackson, J. D., Classical Electrodynamics, Wiley, 1998.
138. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 2008.
139. Alu, A. and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers," Journal of Applied Physics, Vol. 97, No. 9, 094310, Apr. 2005. Google Scholar
140. Alu, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, No. 1, 016623, Jul. 2005. Google Scholar
141. Ball, P., "Engineers devise invisibility shield," Nature News, Feb. 2005. Google Scholar
142. Alu, A. and N. Engheta, "Plasmonic and metamaterial cloaking: Physical mechanisms and potentials," J. Opt. A: Pure Appl. Opt., Vol. 10, No. 9, 093002, Sep. 2008. Google Scholar
143. Chen, P.-Y., J. Soric, and A. Alu, "Invisibility and cloaking based on scattering cancellation," Advanced Materials, Vol. 24, No. 44, OP281-OP304, 2012. Google Scholar
144. Alu, A. and N. Engheta, "Plasmonic materials in transparency and cloaking problems: Mechanism, robustness, and physical insights," Opt. Express, Vol. 15, No. 6, 3318-3332, Mar. 2007. Google Scholar
145. Alu, A. and N. Engheta, "Cloaking and transparency for collections of particles with metamaterial and plasmonic covers," Opt. Express, Vol. 15, No. 12, 7578-7590, Jun. 2007. Google Scholar
146. Alu, A. and N. Engheta, "Multifrequency optical invisibility cloak with layered plasmonic shells," Phys. Rev. Lett., Vol. 100, No. 11, 113901, Mar. 2008. Google Scholar
147. Alu, A. and N. Engheta, "Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking," New J. Phys., Vol. 10, No. 11, 115036, Nov. 2008. Google Scholar
148. Tricarico, S., F. Bilotti, A. Alu, and L. Vegni, "Plasmonic cloaking for irregular objects with anisotropic scattering properties," Phys. Rev. E, Vol. 81, No. 2, 026602, Feb. 2010. Google Scholar
149. Kallos, E., C. Argyropoulos, Y. Hao, and A. Alu, "Comparison of frequency responses of cloaking devices under nonmonochromatic illumination ," Phys. Rev. B, Vol. 84, No. 4, 045102, Jul. 2011. Google Scholar
150. Alu, A., D. Rainwater, and A. Kerkhoff, "Plasmonic cloaking of cylinders: Finite length, oblique illumination and cross-polarization coupling," New J. Phys., Vol. 12, No. 10, 103028, Oct. 2010. Google Scholar
151. Silveirinha, M. G., A. Alu, and N. Enghet, "Cloaking mechanism with antiphase plasmonic satellites," Phys. Rev. B, Vol. 78, No. 20, 205109, Nov. 2008. Google Scholar
152. Silveirinha, M. G., A. Alu, and N. Engheta, "Parallel-plate metamaterials for cloaking structures," Phys. Rev. E, Vol. 75, No. 3, 036603, Mar. 2007. Google Scholar
153. Silveirinha, M. G., A. Alu, and N. Engheta, "Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation," Phys. Rev. B, Vol. 78, No. 7, 075107, Aug. 2008. Google Scholar
154. Edwards, B., A. Alu, M. G. Silveirinha, and N. Engheta, "Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials," Phys. Rev. Lett., Vol. 103, No. 15, 153901, Oct. 2009. Google Scholar
155. Rainwater, D., A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, "Experimental verification of three-dimensional plasmonic cloaking in free-space," New J. Phys., Vol. 14, No. 1, 013054, Jan. 2012. Google Scholar
156. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2005.
157. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, 2003.
158. Alu, A., "Mantle cloak: Invisibility induced by a surface," Phys. Rev. B, Vol. 80, No. 24, 245115, Dec. 2009. Google Scholar
159. Chen, P.-Y. and A. Alu, "Mantle cloaking using thin patterned metasurfaces," Phys. Rev. B, Vol. 84, No. 20, 205110, Nov. 2011. Google Scholar
160. Chen, P.-Y., F. Monticone, and A. Alu, "Suppressing the electromagnetic scattering with an helical mantle cloak," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1598-1601, 2011. Google Scholar
161. Padooru, Y. R., A. B. Yakovlev, P.-Y. Chen, and A. Alu, "Line-source excitation of realistic conformal metasurface cloaks," Journal of Applied Physics, Vol. 112, No. 10, 104902, Nov. 2012. Google Scholar
162. Padooru, Y. R., A. B. Yakovlev, P.-Y. Chen, and A. Alu, "Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays," Journal of Applied Physics, Vol. 112, No. 3, 034907, Aug. 2012. Google Scholar
163. Chen, P.-Y. and A. Alu, "Atomically thin surface cloak using graphene monolayers," ACS Nano, Vol. 5, No. 7, 5855-5863, Jul. 2011. Google Scholar
164. Soric, J. C., P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alu, "Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space," New J. Phys., Vol. 15, No. 3, 033037, Mar. 2013. Google Scholar
165. Alitalo, P., O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, "Transmission-line networks cloaking objects from electromagnetic fields," IEEE Trans. Antennas Prop., Vol. 56, No. 2, 416-424, 2008. Google Scholar
166. Alitalo, P., O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, "Correction to ‘transmission-line networks cloaking objects from electromagnetic fields’ [Feb. 08, 416–424]," IEEE Trans. Antennas Prop., Vol. 56, No. 3, 918-918, 2008. Google Scholar
167. Alitalo, P., S. Ranvier, J. Vehmas, and S. Tretyakov, "A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects," Metamaterials, Vol. 2, No. 4, 206-212, Dec. 2008. Google Scholar
168. Alitalo, P. and S. Tretyakov, "Electromagnetic cloaking with metamaterials," Materials Today, Vol. 12, No. 3, 22-29, Mar. 2009. Google Scholar
169. Alitalo, P., F. Bongard, J.-F. Z¨urcher, J. Mosig, and S. Tretyakov, "Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks," Applied Physics Letters, Vol. 94, No. 1, 014103, Jan. 2009. Google Scholar
170. Tretyakov, S., P. Alitalo, O. Luukkonen, and C. Simovski, "Broadband electromagnetic cloaking of long cylindrical objects," Phys. Rev. Lett., Vol. 103, No. 10, 103905, Sep. 2009. Google Scholar
171. Alitalo, P. and S. A. Tretyakov, "Electromagnetic cloaking of strongly scattering cylindrical objects by a volumetric structure composed of conical metal plates," Phys. Rev. B, Vol. 82, No. 24, 245111, Dec. 2010. Google Scholar
172. Alitalo, P., A. E. Culhaoglu, A. V. Osipov, S. Thurner, E. Kemptner, and S. A. Tretyakov, "Bistatic scattering characterization of a three-dimensional broadband cloaking structure," Journal of Applied Physics, Vol. 111, No. 3, 034901-034901-5, 2012. Google Scholar
173. Milton, G. W. and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. A, Vol. 462, No. 2074, 3027-3059, Oct. 2006. Google Scholar
174. Milton, G. W., N.-A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, "A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance," Proc. R. Soc. A, Vol. 461, No. 2064, 3999-4034, Dec. 2005. Google Scholar
175. Nicorovici, N. A., G. W. Milton, R. C. McPhedran, and L. C. Botten, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Opt. Express, Vol. 15, No. 10, 6314-6323, May 2007. Google Scholar
176. Nicorovici, N.-A. P., R. C. McPhedran, S. Enoch, and G. Tayeb, "Finite wavelength cloaking by plasmonic resonance," New J. Phys., Vol. 10, No. 11, 115020, Nov. 2008. Google Scholar
177. Lai, Y., H. Chen, Z.-Q. Zhang, and C. T. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Phys. Rev. Lett., Vol. 102, No. 9, 093901, Mar. 2009. Google Scholar
178. Zheng, G., X. Heng, and C. Yang, "A phase conjugate mirror inspired approach for building cloaking structures with left-handed materials," New J. Phys., Vol. 11, No. 3, 033010, Mar. 2009. Google Scholar
179. Chen, H., Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, "Extending the bandwidth of electromagnetic cloaks," Phys. Rev. B, Vol. 76, No. 24, 241104, Dec. 2007. Google Scholar
180. Miller, D. A. B., "On perfect cloaking," Opt. Express, Vol. 14, No. 25, 12457-12466, Dec. 2006. Google Scholar
181. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Full-wave invisibility of active devices at all frequencies," Commun. Math. Phys., Vol. 275, No. 3, 749-789, Nov. 2007. Google Scholar
182. Vasquez, F. G., G. W. Milton, and D. Onofrei, "Active exterior cloaking for the 2D laplace and Helmholtz equations," Phys. Rev. Lett., Vol. 103, No. 7, 073901, Aug. 2009. Google Scholar
183. Guevara Vasquez, F., G. W. Milton, and D. Onofrei, "Broadband exterior cloaking," Opt. Express, Vol. 17, No. 17, 14800-14805, Aug. 2009. Google Scholar
184. Ma, Q., Z. L. Mei, S. K. Zhu, T. Y. Jin, and T. J. Cui, "Experiments on active cloaking and illusion for Laplace equation," Phys. Rev. Lett., Vol. 111, No. 17, 173901, Oct. 2013. Google Scholar
185. Chen, P.-Y., C. Argyropoulos, and A. Alu, "Broadening the cloaking bandwidth with non-foster metasurfaces," Phys. Rev. Lett., Vol. 111, No. 23, 233001, Dec. 2013. Google Scholar
186. Friot, E., R. Guillermin, and M. Winninger, "Active control of scattered acoustic radiation: A real-time implementation for a three-dimensional object," Acta Acustica United with Acustica, Vol. 92, No. 2, 278-288, Mar. 2006. Google Scholar
187. Bender, C. M. and S. Boettcher, "Real spectra in non-hermitian Hamiltonians having PT symmetry," Phys. Rev. Lett., Vol. 80, 5243-5246, 1998. Google Scholar
188. Makris, K. G., R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, "Beam dynamics in PT symmetric optical lattices," Phys. Rev. Lett., Vol. 100, 103904, 2008. Google Scholar
189. Kulishov, M., J. Laniel, N. Belanger, J. Azana, and D. Plant, "Nonreciprocal waveguide Bragg gratings," Opt. Express, Vol. 13, 3068-3078, 2005. Google Scholar
190. Razzari, L. and R. Morandotti, "Optics: Gain and loss mixed in the same cauldron," Nature, Vol. 488, 163-164, 2012. Google Scholar
191. Mostafazadeh, A., "Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies," Phys. Rev. Lett., Vol. 102, 220402, 2009. Google Scholar
192. Schomerus, H., "Quantum noise and self-sustained radiation of PT-symmetric systems," Phys. Rev. Lett., Vol. 104, 233601, 2010. Google Scholar
193. Lin, Z., et al. "Unidirectional invisibility induced by PT-symmetric periodic structures," Phys. Rev. Lett., Vol. 106, 213901, 2011. Google Scholar
194. Fleury, R., D. L. Sounas, and A. Alu, "Negative refraction and planar focusing based on parity-time symmetric metasurfaces ," Phys. Rev. Lett., Vol. 113, No. 2, 023903, Jul. 2014. Google Scholar
195. Xu, S., X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, "Experimental demonstration of a free-space cylindrical cloak without superluminal propagation," Phys. Rev. Lett., Vol. 109, No. 22, 223903, Nov. 2012. Google Scholar
196. Aliev, A. E., Y. N. Gartstein, and R. H. Baughman, "Mirage effect from thermally modulated transparent carbon nanotube sheets," Nanotechnology, Vol. 22, No. 43, 435704, Oct. 2011. Google Scholar
197. Schittny, R., M. Kadic, T. B¨uckmann, and M. Wegener, "Invisibility cloaking in a diffusive light scattering medium," Science, Vol. 345, No. 6195, 427-429, Jun. 2014. Google Scholar
198. Liu, Z., X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, "Locally Resonant Sonic Materials," Science, Vol. 289, No. 5485, 1734-1736, 2000. Google Scholar
199. Li, J. and C. T. Chan, "Double-negative acoustic metamaterial," Phys. Rev. E, Vol. 70, No. 5, 055602, Nov. 2004. Google Scholar
200. Fang, N., D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, "Ultrasonic metamaterials with negative modulus," Nature Materials, Vol. 5, No. 6, 452-456, 2006. Google Scholar
201. Lee, S. H., C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, "Acoustic metamaterial with negative density," Physics Letters A, Vol. 373, No. 48, 4464-4469, Dec. 2009. Google Scholar
202. Bongard, F., H. Lissek, and J. R. Mosig, "Acoustic transmission line metamaterial with negative/zero/positive refractive index ," Phys. Rev. B, Vol. 82, No. 9, 094306, 2010. Google Scholar
203. Lee, S. H., C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, "Composite acoustic medium with simultaneously negative density and modulus," Phys. Rev. Lett., Vol. 104, No. 5, 054301, Feb. 2010. Google Scholar
204. Zhou, X. and G. Hu, "Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass," Applied Physics Letters, Vol. 98, No. 26, 263510-263510-3, Jul. 2011. Google Scholar
205. Liang, Z. and J. Li, "Extreme acoustic metamaterial by coiling up space," Phys. Rev. Lett., Vol. 108, No. 11, 114301, Mar. 2012. Google Scholar
206. Xie, Y., B.-I. Popa, L. Zigoneanu, and S. A. Cummer, "Measurement of a broadband negative index with space-coiling acoustic metamaterials," Phys. Rev. Lett., Vol. 110, No. 17, 175501, Apr. 2013. Google Scholar
207. Frenzel, T., J. D. Brehm, T. B¨uckmann, R. Schittny, M. Kadic, and M. Wegener, "Three-dimensional labyrinthine acoustic metamaterials," Applied Physics Letters, Vol. 103, No. 6, 061907, Aug. 2013. Google Scholar
208. Yang, M., G. Ma, Z. Yang, and P. Sheng, "Coupled membranes with doubly negative mass density and bulk modulus," Phys. Rev. Lett., Vol. 110, No. 13, 134301, Mar. 2013. Google Scholar
209. Fleury, R. and A. Alu, "Extraordinary sound transmission through density-near-zero ultranarrow channels," Phys. Rev. Lett., Vol. 111, No. 5, 055501, Jul. 2013. Google Scholar
210. Milton, G. W., M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys., Vol. 8, No. 10, 248, Oct. 2006. Google Scholar
211. Milton, G. W., "New metamaterials with macroscopic behavior outside that of continuum elastodynamics," New J. Phys., Vol. 9, No. 10, 359, Oct. 2007. Google Scholar
212. Cummer, S. A. and D. Schurig, "One path to acoustic cloaking," New J. Phys., Vol. 9, No. 3, 45, Mar. 2007. Google Scholar
213. Chen, H. and C. T. Chan, "Acoustic cloaking in three dimensions using acoustic metamaterials," Applied Physics Letters, Vol. 91, No. 18, 183518, Nov. 2007. Google Scholar
214. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, "Scattering theory derivation of a 3D acoustic cloaking shell," Phys. Rev. Lett., Vol. 100, No. 2, 024301, Jan. 2008. Google Scholar
215. Cummer, S. A., M. Rahm, and D. Schurig, "Material parameters and vector scaling in transformation acoustics," New J. Phys., Vol. 10, No. 11, 115025, Nov. 2008. Google Scholar
216. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Full-wave invisibility of active devices at all frequencies," Commun. Math. Phys., Vol. 275, No. 3, 749-789, Nov. 2007. Google Scholar
217. Farhat, M., S. Guenneau, S. Enoch, A. Movchan, F. Zolla, and A. Nicolet, "A homogenization route towards square cylindrical acoustic cloaks," New J. Phys., Vol. 10, No. 11, 115030, Nov. 2008. Google Scholar
218. Milton, G. W. and A. V. Cherkaev, "Which elasticity tensors are realizable?," J. Eng. Mater. Technol., Vol. 117, No. 4, 483-493, Oct. 1995. Google Scholar
219. Kadic, M., T. Buckmann, N. Stenger, M. Thiel, and M. Wegener, "On the practicability of pentamode mechanical metamaterials," Applied Physics Letters, Vol. 100, No. 19, 191901, May 2012. Google Scholar
220. Norris, A. N., "Acoustic metafluids," The Journal of the Acoustical Society of America, Vol. 125, No. 2, 839-849, Feb. 2009. Google Scholar
221. Torrent, D. and J. Sanchez-Dehesa, "Anisotropic mass density by two-dimensional acoustic metamaterials," New J. Phys., Vol. 10, No. 2, 023004, Feb. 2008. Google Scholar
222. Torrent, D. and J. Sanchez-Dehesa, "Acoustic cloaking in two dimensions: A feasible approach," New J. Phys., Vol. 10, No. 6, 063015, Jun. 2008. Google Scholar
223. Cheng, Y., F. Yang, J. Y. Xu, and X. J. Liu, "A multilayer structured acoustic cloak with homogeneous isotropic materials," Applied Physics Letters, Vol. 92, No. 15, 151913, Apr. 2008. Google Scholar
224. Munteanu, L. and V. Chiroiu, "On three-dimensional spherical acoustic cloaking," New J. Phys., Vol. 13, No. 8, 083031, Aug. 2011. Google Scholar
225. Urzhumov, Y., F. Ghezzo, J. Hunt, and D. R. Smith, "Acoustic cloaking transformations from attainable material properties," New J. Phys., Vol. 12, No. 7, 073014, Jul. 2010. Google Scholar
226. Zhang, S., C. Xia, and N. Fang, "Broadband acoustic cloak for ultrasound waves," Phys. Rev. Lett., Vol. 106, No. 2, 024301, Jan. 2011. Google Scholar
227. Popa, B.-I., L. Zigoneanu, and S. A. Cummer, "Experimental acoustic ground cloak in air," Phys. Rev. Lett., Vol. 106, No. 25, 253901, Jun. 2011. Google Scholar
228. Farhat, M., S. Guenneau, and S. Enoch, "Ultrabroadband elastic cloaking in thin plates," Phys. Rev. Lett., Vol. 103, No. 2, 024301, Jul. 2009. Google Scholar
229. Brun, M., S. Guenneau, and A. B. Movchan, "Achieving control of in-plane elastic waves," Applied Physics Letters, Vol. 94, No. 6, 061903, Feb. 2009. Google Scholar
230. Stenger, N., M. Wilhelm, and M. Wegener, "Experiments on elastic cloaking in thin plates," Phys. Rev. Lett., Vol. 108, No. 1, 014301, Jan. 2012. Google Scholar
231. Guild, M. D., A. Alu, and M. R. Haberman, "Cancellation of acoustic scattering from an elastic sphere," The Journal of the Acoustical Society of America, Vol. 129, No. 3, 1355-1365, Mar. 2011. Google Scholar
232. Guild, M. D., M. R. Haberman, and A. Alu, "Plasmonic cloaking and scattering cancelation for electromagnetic and acoustic waves," Wave Motion, Vol. 48, No. 6, 468-482, 2011. Google Scholar
233. Guild, M. D., M. R. Haberman, and A. Alu, "Plasmonic-type acoustic cloak made of a bilaminate shell," Phys. Rev. B, Vol. 86, No. 10, 104302, Sep. 2012. Google Scholar
234. Farhat, M., P.-Y. Chen, S. Guenneau, S. Enoch, and A. Alu, "Frequency-selective surface acoustic invisibility for three-dimensional immersed objects," Phys. Rev. B, Vol. 86, No. 17, 174303, Nov. 2012. Google Scholar
235. Sanchis, L., V. M. Garcia-Chocano, R. Llopis-Pontiveros, A. Climente, J. Mart´ınez-Pastor, F. Cervera, and J. Sanchez-Dehesa, "Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere," Phys. Rev. Lett., Vol. 110, No. 12, 124301, Mar. 2013. Google Scholar
236. Martin, T. P. and G. J. Orris, "Hybrid inertial method for broadband scattering reduction," Applied Physics Letters, Vol. 100, No. 3, 033506, Jan. 2012. Google Scholar
237. Li, N., J. Ren, L. Wang, G. Zhang, P. Hanggi, and B. Li, "Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond," Rev. Mod. Phys., Vol. 84, No. 3, 1045-1066, Jul. 2012. Google Scholar
238. Fan, C. Z., Z., Y. Gao, and J. P. Huang, "Shaped graded materials with an apparent negative thermal conductivity," Applied Physics Letters, Vol. 92, No. 25, 251907, Jun. 2008. Google Scholar
239. Chen, T., C.-N. Weng, and J.-S. Chen, "Cloak for curvilinearly anisotropic media in conduction," Applied Physics Letters, Vol. 93, No. 11, 114103, Sep. 2008. Google Scholar
240. Li, J. Y., Y. Gao, and J. P. Huang, "A bifunctional cloak using transformation media," Journal of Applied Physics, Vol. 108, No. 7, 074504, Oct. 2010. Google Scholar
241. Guenneau, S., C. Amra, and D. Veynante, "Transformation thermodynamics: Cloaking and concentrating heat flux," Opt. Express, Vol. 20, No. 7, 8207-8218, Mar. 2012. Google Scholar
242. Narayana, S. and Y. Sato, "Heat flux manipulation with engineered thermal materials," Phys. Rev. Lett., Vol. 108, No. 21, 214303, May 2012. Google Scholar
243. Narayana, S., S. Savo, and Y. Sato, "Transient heat flux shielding using thermal metamaterials," Applied Physics Letters, Vol. 102, No. 20, 201904, May 2013. Google Scholar
244. Dede, E. M., T. Nomura, P. Schmalenberg, and J. S. Lee, "Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects," Applied Physics Letters, Vol. 103, No. 6, 063501, Aug. 2013. Google Scholar
245. Hin Ooi, E. and V. Popov, "Transformation thermodynamics for heat flux management based on segmented thermal cloaks," The European Physical Journal Applied Physics, Vol. 63, No. 1, 10903, Jul. 2013. Google Scholar
246. Schittny, R., M. Kadic, S. Guenneau, and M. Wegener, "Experiments on transformation thermodynamics: Molding the flow of heat," Phys. Rev. Lett., Vol. 110, No. 19, 195901, May 2013. Google Scholar
247. Leonhardt, U., "Applied physics: Cloaking of heat," Nature, Vol. 498, No. 7455, 440-441, Jun. 2013. Google Scholar
248. Xu, H., X. Shi, F. Gao, H. Sun, and B. Zhang, "Ultrathin three-dimensional thermal cloak," Phys. Rev. Lett., Vol. 112, No. 5, 054301, Feb. 2014. Google Scholar
249. Alu, A., "Thermal cloaks get hot," Physics, Vol. 7, No. 12 (3 pages), Feb. 3, 2014. Google Scholar
250. Han, T., X. Bai, D. Gao, J. T. L. Thong, B. Li, and C.-W. Qiu, "Experimental demonstration of a bilayer thermal cloak," Phys. Rev. Lett., Vol. 112, No. 5, 054302, Feb. 2014. Google Scholar
251. Zhang, S., D. A. Genov, C. Sun, and X. Zhang, "Cloaking of matter waves," Phys. Rev. Lett., Vol. 100, No. 12, 123002, Mar. 2008. Google Scholar
252. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Approximate quantum cloaking and almost-trapped states," Phys. Rev. Lett., Vol. 101, No. 22, 220404, Nov. 2008. Google Scholar
253. Lin, D.-H., "Cloaking spin-1/2 matter waves," Phys. Rev. A, Vol. 81, No. 6, 063640, Jun. 2010. Google Scholar
254. Lin, D.-H., "Cloaking two-dimensional fermions," Phys. Rev. A, Vol. 84, No. 3, 033624, 2011. Google Scholar
255. Lin, D.-H. and P.-G. Luan, "Cloaking matter waves around a Dirac monopole," Physics Letters A, Vol. 376, No. 5, 675-678, Jan. 2012. Google Scholar
256. Fleury, R. and A. Alu, "Quantum cloaking based on scattering cancellation," Phys. Rev. B, Vol. 87, No. 4, 045423, Jan. 2013. Google Scholar
257. Liao, B., M. Zebarjadi, K. Esfarjani, and G. Chen, "Cloaking core-shell nanoparticles from conducting electrons in solids," Phys. Rev. Lett., Vol. 109, No. 12, 126806, 2012. Google Scholar
258. Fleury, R. and A. Alu, "Furtive quantum sensing using matter-wave cloaks," Phys. Rev. B, Vol. 87, No. 20, 201106, May 2013. Google Scholar
259. Greenleaf, A., A., Y. Kurylev, M. Lassas, U. Leonhardt, and G. Uhlmann, "Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics," PNAS, Vol. 109, No. 26, 10169-10174, Jun. 2012. Google Scholar
260. Liao, B., M. Zebarjadi, K. Esfarjani, and G. Chen, "Isotropic and energy-selective electron cloaks on graphene," Phys. Rev. B, Vol. 88, No. 15, 155432, Oct. 2013. Google Scholar
261. Fleury, R. and A. Alu, "Exotic properties and potential applications of quantum metamaterials," Appl. Phys. A, Vol. 109, No. 4, 781-788, Dec. 2012. Google Scholar
262. Silveirinha, M. G. and N. Engheta, "Effective medium approach to electron waves: Graphene superlattices," Phys. Rev. B, Vol. 85, No. 19, 195413, May 2012. Google Scholar
263. Silveirinha, M. G. and N. Engheta, "Transformation electronics: Tailoring the effective mass of electrons," Phys. Rev. B, Vol. 86, No. 16, 161104, Oct. 2012. Google Scholar
264. Silveirinha, M. G. and N. Engheta, "Metamaterial-inspired model for electron waves in bulk semiconductors," Phys. Rev. B, Vol. 86, No. 24, 245302, Dec. 2012. Google Scholar
265. Chen, H., J. Yang, J. Zi, and C. T. Chan, "Transformation media for linear liquid surface waves," EPL, Vol. 85, No. 2, 24004, Jan. 2009. Google Scholar
266. Farhat, M., S. Enoch, S. Guenneau, and A. B. Movchan, "Broadband cylindrical acoustic cloak for linear surface waves in a fluid," Phys. Rev. Lett., Vol. 101, No. 13, 134501, Sep. 2008. Google Scholar
267. Harrington, R. F., "Theory of loaded scatterers," Proc. IEEE, Vol. 3, No. 4, 617-623, Apr. 1964. Google Scholar
268. Schindler, J. K., R. B. Mack, and P. Blacksmith, "The control of electromagnetic scattering by impedance loading," Proc. IEEE, Vol. 53, No. 8, 993-1004, Aug. 1965. Google Scholar
269. Green, R. B., "Scattering from conjugate-matched antennas," IEEE Trans. Antennas Prop., Vol. 14, No. 1, 17-21, Jan. 1966. Google Scholar
270. Hansen, R. C., "Relationships between antennas as scatters and as radiators," Proc. IEEE, Vol. 77, No. 5, 659-662, May 1989. Google Scholar
271. Andersen, J. B. and A. Frandsen, "Absorption efficiency of receiving antennas," IEEE Trans. Antennas Prop., Vol. 53, No. 9, 2843-2849, Sep. 2005. Google Scholar
272. Kwon, D. H. and D. M. Pozar, "Optimal characteristics of an arbitrary receive antenna," IEEE Trans. Antennas Prop., Vol. 57, No. 12, 3720-3727, Dec. 2009. Google Scholar
273. Kwon, D. H. and D. M. Pozar, "Design of received and scattered powers for dipole arrays using load optimization," 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), Jul. 2010. Google Scholar
274. Karilainen, A. O. and S. A. Tretyakov, "Circularly polarized receiving antenna incorporating two helices to achieve low backscattering," IEEE Trans. Antennas Prop., Vol. 60, No. 7, 3471-3475, Jul. 2012. Google Scholar
275. Alu, A. and N. Engheta, "Cloaking a sensor," Phys. Rev. Lett., Vol. 102, 233901, Jun. 2009. Google Scholar
276. Alu, A. and N. Engheta, "Cloaking a receiving antenna or a sensor with plasmonic metamaterials," Metamaterials, Vol. 4, No. 4, 153-159, Mar. 2010. Google Scholar
277. Alu, A. and S. Maslovski, "Power relations and a consistent analytical model for receiving wire antennas," IEEE Trans. Antennas Prop., Vol. 58, No. 5, 1436-1448, May 2010. Google Scholar
278. Soric, J. C., R. Fleury, A. Monti, A. Toscano, F. Bilotti, and A. Alu, "Controlling scattering and absorption with metamaterial covers," IEEE Trans. Antennas Prop., Vol. 62, No. 8, 4220-4229, Jul. 2014. Google Scholar
279. Kwon, D. H. and D. H. Werner, "Restoration of antenna parameters in scattering environments using electromagnetic cloaking," Appl. Phys. Lett., Vol. 92, No. 11, 113507, Mar. 2008. Google Scholar
280. Monti, A., A. Toscano, and F. Bilotti, "Metasurface mantle cloak for antenna applications," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), Jul. 2012. Google Scholar
281. Valagiannopoulos, C. A. and N. L. Tsitsas, "Integral equation analysis of a low-profile receiving planar microstrip antenna with a cloaking substrate," Radio Sci., Vol. 47, RS004878, Apr. 2012. Google Scholar
282. Vehmas, J., P. Alitalo, and S. Tretyakov, "Experimental demonstration of antenna blockage reduction with a transmission-line cloak," IET Microw. Antennas Propag., Vol. 6, No. 7, 830-834, Jan. 2012. Google Scholar
283. Monti, A., J. Soric, A. Alu, F. Bilotti, A. Toscano, and L. Vegni, "Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1414, 2012. Google Scholar
284. Alu, A. and N. Engheta, "Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging," Phys. Rev. Lett., Vol. 105, No. 26, 263906, Dec. 2010. Google Scholar
285. Bilotti, F., S. Tricarico, F. Pierini, and L. Vegni, "Cloaking apertureless near-field scanning optical microscopy tips," Optics Lett., Vol. 36, No. 26, 211-213, Jan. 2011. Google Scholar
286. Fan, P., U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, "An invisible metal-semiconductor photodetector," Nature Photonics, Vol. 8, 380-385, May 2012. Google Scholar
287. Fleury, R., J. Soric, and A. Alu, "Physical bounds on absorption and scattering for cloaked sensors," Phys. Rev. B, Vol. 89, No. 4, 045122, 12 pages, Jan. 15, 2014. Google Scholar
288. Alu, A. and N. Engheta, "How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?," J. Nanophoton., Vol. 4, No. 1, 041590, May 2010. Google Scholar
289. Zhang, B., H. Chen, B. I. Wu, and J. A. Kong, "Extraordinary surface voltage effect in the invisibility cloak with an active device inside," Phys. Rev. Lett., Vol. 100, 063904, Feb. 2008. Google Scholar
290. Xu, T., X. F. Zhu, B. Liang, Y. Li, X. Y. Zou, and J. C. Cheng, "Scattering reduction for an acoustic sensor using a multilayer shell comprising a pair of homogenous isotropic single-negative media," Appl. Phys. Lett., Vol. 101, 033509, Jul. 2012. Google Scholar