Vol. 147
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-02-07
Cloaking and Invisibility: A Review (Invited Review)
By
Progress In Electromagnetics Research, Vol. 147, 171-202, 2014
Abstract
Invisibility has been a tantalizing concept for mankind over several centuries. With recent developments in metamaterial science and nanotechnology, the possibility of cloaking objects to incoming electromagnetic radiation has been escaping the realm of science fiction to become a technological reality. In this article, we review the state-of-the-art in the science of invisibility for electromagnetic waves, and examine the different available technical concepts and experimental investigations, focusing on the underlying physics and the basic scientific concepts. We discuss the available cloaking methods, including transformation optics, plasmonic and mantle cloaking, transmission-line networks, parallel-plate cloaking, anomalous resonance methods, hybrid methods and active schemes, and give our perspective on the subject and its future. We also draw a parallel with cloaking research for acoustic and elastodynamic waves, liquid waves, matter waves and thermal flux, demonstrating how ideas initiated in the field of electromagnetism have been able to open groundbreaking venues in a variety of other scientific fields. Finally, applications of cloaking to non-invasive sensing are discussed and reviewed.
Citation
Romain Fleury, and Andrea Alu, "Cloaking and Invisibility: A Review (Invited Review)," Progress In Electromagnetics Research, Vol. 147, 171-202, 2014.
doi:10.2528/PIER15011403
References

1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, 2005.
doi:10.1002/0471754323

2. Eleftheriades, G. V. and K. G. Balmain, Negative-refraction Metamaterials: Fundamental Principles and Applications, John Wiley & Sons, 2005.
doi:10.1002/0471744751

3. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006.

4. Sarychev, A. K. and V. M. Shalaev, Electrodynamics of Metamaterials, World Scientific, 2007.

5. Cai, W. and V. M. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, 2009.

6. Cui, T. J., D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, Springer, 2009.

7. Capolino, F., Theory and Phenomena of Metamaterials, CRC Press, 2009.
doi:10.1201/9781420054262

8. Capolino, F., Applications of Metamaterials, CRC Press, 2009.
doi:10.1201/9781420054248

9. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, John Wiley & Sons, 2011.

10. Shvets, G. and I. Tsukerman, Plasmonics and Plasmonic Metamaterials: Analysis and Applications, World Scientific, 2012.

11. Craster, R. V. and S. Guenneau, Acoustic Metamaterials: Negative Refraction, Imaging, Lensing and Cloaking, Springer, 2012.

12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, Apr. 1968.
doi:10.1070/PU1968v010n04ABEH003699        Google Scholar

13. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966        Google Scholar

14. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.
doi:10.1103/PhysRevLett.84.4184        Google Scholar

15. Pendry, J., "Optics: Positively negative," Nature, Vol. 423, No. 6935, 22-23, May 2003.
doi:10.1038/423022a        Google Scholar

16. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, No. 5685, 788-792, Aug. 2004.
doi:10.1126/science.1096796        Google Scholar

17. Noginov, M. A., H. Li, Y. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, "Controlling spontaneous emission with metamaterials," Opt. Lett., Vol. 35, No. 11, 1863-1865, Jun. 2010.
doi:10.1364/OL.35.001863        Google Scholar

18. Jacob, Z., J.-Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, "Engineering photonic density of states using metamaterials," Appl. Phys. B, Vol. 100, No. 1, 215-218, Jul. 2010.
doi:10.1007/s00340-010-4096-5        Google Scholar

19. Alu, A. and N. Engheta, "Boosting molecular fluorescence with a plasmonic nanolauncher," Phys. Rev. Lett., Vol. 103, No. 4, 043902, Jul. 2009.
doi:10.1103/PhysRevLett.103.043902        Google Scholar

20. Fleury, R. and A. Alu, "Enhanced superradiance in epsilon-near-zero plasmonic channels," Phys. Rev. B, Vol. 87, No. 20, 201101, May 2013.
doi:10.1103/PhysRevB.87.201101        Google Scholar

21. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Phys. Rev. Lett., Vol. 97, No. 15, 157403, Oct. 2006.
doi:10.1103/PhysRevLett.97.157403        Google Scholar

22. Edwards, B., A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Phys. Rev. Lett., Vol. 100, No. 3, 033903, Jan. 2008.
doi:10.1103/PhysRevLett.100.033903        Google Scholar

23. Fleury, R. and A. Alu, "Extraordinary sound transmission through density-near-zero ultranarrow channels," Phys. Rev. Lett., Vol. 111, No. 5, 055501, Jul. 2013.
doi:10.1103/PhysRevLett.111.055501        Google Scholar

24. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency," IEEE Trans. Antennas Prop., Vol. 51, No. 10, 2558-2571, Oct. 2003.
doi:10.1109/TAP.2003.817553        Google Scholar

25. Alu, A., G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, "Plasmonic brewster angle: Broadband extraordinary transmission through optical gratings," Phys. Rev. Lett., Vol. 106, No. 12, 123902, Mar. 2011.
doi:10.1103/PhysRevLett.106.123902        Google Scholar

26. Kerker, M., "Invisible bodies," J. Opt. Soc. Am., Vol. 65, No. 4, 376-379, Apr. 1975.
doi:10.1364/JOSA.65.000376        Google Scholar

27. Chew, H. and M. Kerker, "Abnormally low electromagnetic scattering cross sections," J. Opt. Soc. Am., Vol. 66, No. 5, 445-449, May 1976.
doi:10.1364/JOSA.66.000445        Google Scholar

28. Hertz, P., "Die Bewegung eines Elektrons unter dem Einflusse einer stets gleich gerichteten Kraft," Math. Ann., Vol. 65, No. 1, 1-86, Mar. 1907.
doi:10.1007/BF01450051        Google Scholar

29. Bohm, D. and M. Weinstein, "The self-oscillations of a charged particle," Phys. Rev., Vol. 74, No. 12, 1789-1798, Dec. 1948.
doi:10.1103/PhysRev.74.1789        Google Scholar

30. Goedecke, G. H., "Classically radiationless motions and possible implications for quantum theory," Phys. Rev., Vol. 135, No. 1B, B281-B288, Jul. 1964.
doi:10.1103/PhysRev.135.B281        Google Scholar

31. Hoenders, B. J., "Existence of invisible nonscattering objects and nonradiating source," J. Opt. Soc. Am. A, Vol. 14, No. 1, 262-266, Jan. 1997.
doi:10.1364/JOSAA.14.000262        Google Scholar

32. Boardman, A. D., K. Marinov, N. Zheludev, and V. A. Fedotov, "Dispersion properties of nonradiating configurations: Finite-difference time-domain modeling," Phys. Rev. E, Vol. 72, No. 3, 036603, Sep. 2005.        Google Scholar

33. Kahn, W. K. and H. Kurss, "Minimum-scattering antennas," IEEE Trans. Antennas Prop., Vol. 13, No. 5, 671-675, 1965.        Google Scholar

34. Alexopoulos, N. G. and N. K. Uzunoglu, "Electromagnetic scattering from active objects: Invisible scatterers," Applied Optics, Vol. 17, No. 2, 235-239, 1978.        Google Scholar

35. Kildal, P.-S., A. A. Kishk, and A. Tengs, "Reduction of forward scattering from cylindrical objects using hard surfaces," IEEE Trans. Antennas Prop., Vol. 44, No. 11, 1509-1520, 1996.        Google Scholar

36. Devaney, A. J. and G. Sherman, "Nonuniqueness in inverse source and scattering problems," IEEE Trans. Antennas Prop., Vol. 30, No. 5, 1034-1037, 1982.        Google Scholar

37. Devaney, A. J., "Nonuniqueness in the inverse scattering problem," Journal of Mathematical Physics, Vol. 19, No. 7, 1526-1531, Aug. 2008.        Google Scholar

38. Greenleaf, A., M. Lassas, and G. Uhlmann, "On nonuniqueness for Calder´on’s inverse problem," Mathematical Research Letters, Vol. 10, No. 5, 685-693, 2003.        Google Scholar

39. Greenleaf, A., M. Lassas, and G. Uhlmann, "Anisotropic conductivities that cannot be detected by EIT," Physiol. Meas., Vol. 24, No. 2, 413, May 2003.        Google Scholar

40. Monticone, F. and A. Alu, "Do cloaked objects really scatter less?," Phys. Rev. X, Vol. 3, No. 4, 041005, Oct. 2013.        Google Scholar

41. Monticone, F. and A. Alu, "On the physical bounds of cloaking and invisibility," 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics --- Metamaterials 2013, Bordeaux, France, Sep. 16-21, 2013.        Google Scholar

42. Tamm, I. Y., "Electrodynamics of an anisotropic medium in the special theory of relativity," J. Russ. Phys. Chem. Soc., Vol. 56, 248, 1924 (in Russian).        Google Scholar

43. Tamm, I. Y., "Crystal-optics of the theory of relativity pertinent to the geometry of a bi-quadratic form," J. Russ. Phys. Chem. Soc., Vol. 56, 1, 1925 (in Russian).        Google Scholar

44. Van Dantzig, D., "The fundamental equations of electromagnetism, independent of metrical geometry," Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 30, No. 04, 421-421, 1934.        Google Scholar

45. Dolin, L. S., "On a possibility of comparing three-dimensional electromagnetic systems with inhomogeneous filling," Izv. Vyssh. Uchebn. Zaved., Radiofiz., Vol. 4, 964-967, 1961.        Google Scholar

46. Post, E. G., Formal Structure of Electromagnetics: General Covariance and Electromagnetics, Interscience Publishers, New York, 1962.

47. Lax, M. and D. F. Nelson, "Maxwell equations in material form," Phys. Rev. B, Vol. 13, No. 4, 1777-1784, Feb. 1976.        Google Scholar

48. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell’s equations," Journal of Modern Optics, Vol. 43, No. 4, 773-793, 1996.        Google Scholar

49. Teixeira, F. L. and W. C. Chew, "Lattice electromagnetic theory from a topological viewpoint," Journal of Mathematical Physics, Vol. 40, No. 1, 169-187, Jan. 1999.        Google Scholar

50. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 665-686, 1999.        Google Scholar

51. Leonhardt, U., "Notes on waves with negative phase velocity," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 9, No. 1, 102-105, 2003.        Google Scholar

52. Chen, H., B. Hou, S. Chen, X. Ao, W. Wen, and C. T. Chan, "Design and experimental realization of a broadband transformation media field rotator at microwave frequencies," Phys. Rev. Lett., Vol. 102, No. 18, 183903, May 2009.        Google Scholar

53. Schurig, D., J. B. Pendry, and D. R. Smith, "Transformation-designed optical elements," Opt. Express, Vol. 15, No. 22, 14772-14782, Oct. 2007.        Google Scholar

54. Liu, Y., T. Zentgraf, G. Bartal, and X. Zhang, "Transformational plasmon optics," Nano Lett., Vol. 10, No. 6, 1991-1997, Jun. 2010.        Google Scholar

55. Alu, A., F. Bilotti, and L. Vegni, "Generalized transmission line equations for bianisotropic materials," IEEE Trans. Antennas Prop., Vol. 51, No. 11, 3134-3141, Nov. 2003.        Google Scholar

56. Alu, A., F. Bilotti, and L. Vegni, "Method of lines numerical analysis of conformal antenna," IEEE Trans. Antennas Prop., Vol. 52, No. 6, 1530-1540, Jun. 2004.        Google Scholar

57. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, Jun. 2006.        Google Scholar

58. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, Jun. 2006.        Google Scholar

59. Shalaev, V. M., "Transforming light," Science, Vol. 322, No. 5900, 384-386, Oct. 2008.        Google Scholar

60. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Cloaking devices, electromagnetic wormholes, and transformation optics," SIAM Review, Vol. 51, No. 1, 3-33, Feb. 2009.        Google Scholar

61. Chen, H., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nat. Mater., Vol. 9, No. 5, 387-396, May 2010.        Google Scholar

62. Zhang, B., "Electrodynamics of transformation-based invisibility cloaking," Light Sci. Appl., Vol. 1, No. 10, e32, Oct. 2012.        Google Scholar

63. Leonhardt, U., "To invisibility and beyond," Nature, Vol. 471, No. 7338, 292-293, Mar. 2011.        Google Scholar

64. Wood, B., "Metamaterials and invisibility," Comptes Rendus Physique, Vol. 10, No. 5, 379-390, Jun. 2009.        Google Scholar

65. Sheng, P., "Waves on the Horizon," Science, Vol. 313, No. 5792, 1399-1400, Sep. 2006.        Google Scholar

66. Leonhardt, U., "Notes on conformal invisibility devices," New J. Phys., Vol. 8, No. 7, 118, Jul. 2006.        Google Scholar

67. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express, Vol. 14, No. 21, 9794-9804, Oct. 2006.        Google Scholar

68. Leonhardt, U. and T. G. Philbin, "General relativity in electrical engineering," New J. Phys., Vol. 8, No. 10, 247, Oct. 2008.        Google Scholar

69. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 7, No. 4, 036621, Sep. 2006.        Google Scholar

70. Zolla, F., S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett., Vol. 32, No. 9, 1069-1071, May 2007.        Google Scholar

71. Ruan, Z., M. Yan, C. W. Neff, and M. Qiu, "Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations," Phys. Rev. Lett., Vol. 99, No. 11, 113903, Sep. 2007.        Google Scholar

72. Chen, H., B.-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, No. 6, 063903, Aug. 2007.        Google Scholar

73. Zhang, B., H. Chen, B.-I.Wu, Y. Luo, L. Ran, and J. A. Kong, "Response of a cylindrical invisibility cloak to electromagnetic waves," Phys. Rev. B, Vol. 76, No. 12, 121101, Sep. 2007.        Google Scholar

74. Yaghjian, A. D. and S. Maci, "Alternative derivation of electromagnetic cloaks and concentrators," New J. Phys., Vol. 10, No. 11, 115022, Dec. 2008.        Google Scholar

75. Perczel, J., T. Tyc, and U. Leonhardt, "Invisibility cloaking without superluminal propagation," New J. Phys., Vol. 13, No. 8, 083007, Aug. 2011.        Google Scholar

76. Sihvola, A., S. Tretyakov, and A. de Baas, "Metamaterials with extreme material parameters," J. Commun. Technol. Electron., Vol. 52, No. 9, 986-990.        Google Scholar

77. Alu, A. and N. Engheta, "Extremely anisotropic boundary conditions and their optical applications," Radio Science, Special Issue for URSI EMTS 2010, Vol. 46, RS0E11, Sep. 2011.        Google Scholar

78. Alu, A. and N. Engheta, "Optical nanoswitch: An engineered plasmonic nanoparticle with extreme parameters and giant anisotropy," New J. Phys., Vol. 11, No. 1, 013026, Jan. 2009.        Google Scholar

79. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, No. 15, 155410.        Google Scholar

80. Alu, A., M. G. Silveirinha, and N. Engheta, "Transmission-line analysis of ε-near-zero–filled narrow channels," Phys. Rev. E, Vol. 78, No. 1, 016604, Jul. 2008.        Google Scholar

81. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E, Vol. 70, No. 4, 046608, Oct. 2004.        Google Scholar

82. Alu, A. and N. Engheta, "Coaxial-to-waveguide matching with -near-zero ultranarrow channels and bends," IEEE Trans. Antennas Prop., Vol. 58, No. 2, 328-339, 2010.        Google Scholar

83. Alu, A. and N. Engheta, "Optical ‘shorting wires’," Opt. Express, Vol. 15, No. 21, 13773-13782, Oct. 2007.        Google Scholar

84. Liu, R., Q. Cheng, T. Hand, J. J.Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies," Phys. Rev. Lett., Vol. 100, No. 2, 023903, Jan. 2008.        Google Scholar

85. Choi, M., S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature, Vol. 470, No. 7334, 369-373, Feb. 2011.        Google Scholar

86. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, Nov. 2006.        Google Scholar

87. Kante, B., D. Germain, and A. de Lustrac, "Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies," Phys. Rev. B, Vol. 80, No. 20, 201104, Nov. 2009.        Google Scholar

88. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photon., Vol. 1, No. 4, 224-227, Apr. 2007.        Google Scholar

89. Cai, W., U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, "Nonmagnetic cloak with minimized scattering," Applied Physics Letters, Vol. 91, No. 11, 111105, Sep. 2007.        Google Scholar

90. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express, Vol. 16, No. 8, 5444-5452, Apr. 2008.        Google Scholar

91. Yan, M., Z. Ruan, and M. Qiu, "Cylindrical invisibility cloak with simplified material parameters is inherently visible," Phys. Rev. Lett., Vol. 99, No. 23, 233901, Dec. 2007.        Google Scholar

92. Chen, H., X. Luo, H. Ma, and C. T. Chan, "The anti-cloak," Opt. Express, Vol. 16, No. 19, 14603-14608, Sep. 2008.        Google Scholar

93. Castaldi, G., I. Gallina, V. Galdi, A. Al`u, and N. Engheta, "Analytical study of spherical cloak/anti-cloak interactions," Wave Motion, Vol. 48, No. 6, 455-467, Sep. 2011.        Google Scholar

94. Castaldi, G., I. Gallina, V. Galdi, A. Alu, and N. Engheta, "Cloak/anti-cloak interactions," Opt. Express, Vol. 17, No. 5, 3101-3114, Mar. 2009.        Google Scholar

95. Leonhardt, U. and T. Tyc, "Broadband invisibility by non-euclidean cloaking," Science, Vol. 323, No. 5910, 110-112, Jan. 2009.        Google Scholar

96. Hendi, A., J. Henn, and U. Leonhardt, "Ambiguities in the scattering tomography for central potentials," Phys. Rev. Lett., Vol. 97, No. 7, 073902, Aug. 2006.        Google Scholar

97. Halimeh, J. C. and M. Wegener, "Time-of-flight imaging of invisibility cloaks," Opt. Express, Vol. 20, No. 1, 63-74, Jan. 2012.        Google Scholar

98. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, No. 20, 203901, Nov. 2008.        Google Scholar

99. Dolling, G., M. Wegener, S. Linden, and C. Hormann, "Photorealistic images of objects in effective negative-index materials," Opt. Express, Vol. 14, No. 5, 1842-1849, Mar. 2006.        Google Scholar

100. Halimeh, J. C., T. Ergin, J. Mueller, N. Stenger, and M. Wegener, "Photorealistic images of carpet cloaks," Opt. Express, Vol. 17, No. 22, 19328-19336, Oct. 2009.        Google Scholar

101. Ergin, T., J. C. Halimeh, N. Stenger, and M. Wegener, "Optical microscopy of 3D carpet cloaks: Ray-tracing calculations," Opt. Express, Vol. 18, No. 19, 20535-20545, Sep. 2010.        Google Scholar

102. Danner, A. J., "Visualizing invisibility: Metamaterials-based optical devices in natural environments," Opt. Express, Vol. 18, No. 4, 3332-3337, Feb. 2010.        Google Scholar

103. Halimeh, J. C. and M. Wegener, "Photorealistic ray tracing of free-space invisibility cloaks made of uniaxial dielectrics," Opt. Express, Vol. 20, No. 27, 28330-28340, Dec. 2012.        Google Scholar

104. Halimeh, J. C. and M. Wegener, "Photorealistic rendering of unidirectional free-space invisibility cloaks," Opt. Express, Vol. 21, No. 8, 9457-9472, Apr. 2013.        Google Scholar

105. Zhang, B., T. Chan, and B.-I. Wu, "Lateral shift makes a ground-plane cloak detectable," Phys. Rev. Lett., Vol. 104, No. 23, 233903, Jun. 2010.        Google Scholar

106. Landy, N. I., N. Kundtz, and D. R. Smith, "Designing three-dimensional transformation optical media using quasiconformal coordinate transformations," Phys. Rev. Lett., Vol. 105, No. 19, 193902, Nov. 2010.        Google Scholar

107. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, No. 5912, 366-369, Jan. 2009.        Google Scholar

108. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Mater., Vol. 8, No. 7, 568-571, Jul. 2009.        Google Scholar

109. Lee, J. H., J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, "Direct visualization of optical frequency invisibility cloak based on silicon nanorod array," Opt. Express, Vol. 17, No. 15, 12922-12928, Jul. 2009.        Google Scholar

110. Gabrielli, L. H., J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Photon., Vol. 3, No. 8, 461-463, Aug. 2009.        Google Scholar

111. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, No. 5976, 337-339, Apr. 2010.        Google Scholar

112. Ma, H. F. and T. J. Cui, "Three-dimensional broadband ground-plane cloak made of metamaterials," Nat. Commun., Vol. 1, 21, Jun. 2010.        Google Scholar

113. Gharghi, M., C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, "A carpet cloak for visible light," Nano Lett., Vol. 11, No. 7, 2825-2828, Jul. 2011.        Google Scholar

114. Shin, D., Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, "Broadband electromagnetic cloaking with smart metamaterials," Nat. Commun., Vol. 3, 1213, Nov. 2012.        Google Scholar

115. Smolyaninov, I. I., V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, "Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking," Phys. Rev. Lett., Vol. 102, No. 21, 213901, May 2009.        Google Scholar

116. Luo, Y., J. Zhang, H. Chen, L. Ran, B.-I. Wu, and J.-A. Kong, "A rigorous analysis of plane-transformed invisibility cloaks," IEEE Trans. Antennas Prop., Vol. 57, No. 12, 3926-3933, 2009.        Google Scholar

117. Xi, S., H. Chen, B.-I. Wu, and J.-A. Kong, "One-directional perfect cloak created with homogeneous material," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 3, 131-133, 2009.        Google Scholar

118. Zhang, B., Y. Luo, X. Liu, and G. Barbastathis, "Macroscopic invisibility cloak for visible light," Phys. Rev. Lett., Vol. 106, No. 3, 033901, Jan. 2011.        Google Scholar

119. Chen, X., Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, "Macroscopic invisibility cloaking of visible light," Nat. Commun., Vol. 2, 176, Feb. 2011.        Google Scholar

120. Liang, D., J. Gu, J. Han, Y. Yang, S. Zhang, and W. Zhang, "Robust large dimension terahertz cloaking," Advanced Materials, Vol. 24, No. 7, 916-921, 2012.        Google Scholar

121. Chen, H. and B. Zheng, "Broadband polygonal invisibility cloak for visible light," Sci. Rep., Vol. 2, 255, 2012.        Google Scholar

122. Landy, N. and D. R. Smith, "A full-parameter unidirectional metamaterial cloak for microwaves," Nat. Mater., Vol. 12, No. 1, 25-28, Jan. 2013.        Google Scholar

123. Urzhumov, Y., N. Landy, T. Driscoll, D. Basov, and D. R. Smith, "Thin low-loss dielectric coatings for free-space cloaking," Opt. Lett., Vol. 38, No. 10, 1606-1608, May 2013.        Google Scholar

124. Chen, H., B. Zheng, L. Shen, H. Wang, X. Zhang, N. I. Zheludev, and B. Zhang, "Ray-optics cloaking devices for large objects in incoherent natural light," Nat. Commun., Vol. 4, Oct. 2013.        Google Scholar

125. Howell, J. C. and J. B. Howell, "Simple, broadband, optical spatial cloaking of very large objects,", arXiv e-print 1306.0863, Jun. 2013.        Google Scholar

126. Houdin, R., The Secrets of Stage Conjuring, Wildside Press LLC, 2008.

127. Wood, B. and J. B. Pendry, "Metamaterials at zero frequency," J. Phys.: Condens. Matter, Vol. 19, No. 7, 076208, Feb. 2007.        Google Scholar

128. Sanchez, A., C. Navau, J. Prat-Camps, and D.-X. Chen, "Antimagnets: Controlling magnetic fields with superconductor–metamaterial hybrids," New J. Phys., Vol. 13, No. 9, 093034, Sep. 2011.        Google Scholar

129. Narayana, S. and Y. Sato, "DC magnetic cloak," Advanced Materials, Vol. 24, No. 1, 71-74, 2012.        Google Scholar

130. Gomory, F., M. Solovyov, J. Souc, C. Navau, J. Prat-Camps, and A. Sanchez, "Experimental realization of a magnetic cloak," Science, Vol. 335, No. 6075, 1466-1468, Mar. 2012.        Google Scholar

131. Souc, J., M. Solovyov, F. Gomory, J. Prat-Camps, C. Navau, and A. Sanchez, "A quasistatic magnetic cloak," New J. Phys., Vol. 15, No. 5, 053019, May 2013.        Google Scholar

132. Yang, F., Z. L. Mei, T. Y. Jin, and T. J. Cui, "dc electric invisibility cloak," Phys. Rev. Lett., Vol. 109, No. 5, 053902, Aug. 2012.        Google Scholar

133. Liu, M., Z. L. Mei, X. Ma, and T. J. Cui, "dc illusion and its experimental verification," Applied Physics Letters, Vol. 101, No. 5, 051905, Aug. 2012.        Google Scholar

134. Mei, Z. L., Y. S. Liu, F. Yang, and T. J. Cui, "A dc carpet cloak based on resistor networks," Opt. Express, Vol. 20, No. 23, 25758-25765, Nov. 2012.        Google Scholar

135. Alu, A. and N. Engheta, "Effects of size and frequency dispersion in plasmonic cloaking," Phys. Rev. E, Vol. 78, No. 4, 045602, Oct. 2008.        Google Scholar

136. Papas, C. H., Theory of Electromagnetic Wave Propagation, Courier Dover Publications, 2013.

137. Jackson, J. D., Classical Electrodynamics, Wiley, 1998.

138. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, 2008.

139. Alu, A. and N. Engheta, "Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and/or double-positive metamaterial layers," Journal of Applied Physics, Vol. 97, No. 9, 094310, Apr. 2005.        Google Scholar

140. Alu, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, No. 1, 016623, Jul. 2005.        Google Scholar

141. Ball, P., "Engineers devise invisibility shield," Nature News, Feb. 2005.        Google Scholar

142. Alu, A. and N. Engheta, "Plasmonic and metamaterial cloaking: Physical mechanisms and potentials," J. Opt. A: Pure Appl. Opt., Vol. 10, No. 9, 093002, Sep. 2008.        Google Scholar

143. Chen, P.-Y., J. Soric, and A. Alu, "Invisibility and cloaking based on scattering cancellation," Advanced Materials, Vol. 24, No. 44, OP281-OP304, 2012.        Google Scholar

144. Alu, A. and N. Engheta, "Plasmonic materials in transparency and cloaking problems: Mechanism, robustness, and physical insights," Opt. Express, Vol. 15, No. 6, 3318-3332, Mar. 2007.        Google Scholar

145. Alu, A. and N. Engheta, "Cloaking and transparency for collections of particles with metamaterial and plasmonic covers," Opt. Express, Vol. 15, No. 12, 7578-7590, Jun. 2007.        Google Scholar

146. Alu, A. and N. Engheta, "Multifrequency optical invisibility cloak with layered plasmonic shells," Phys. Rev. Lett., Vol. 100, No. 11, 113901, Mar. 2008.        Google Scholar

147. Alu, A. and N. Engheta, "Theory and potentials of multi-layered plasmonic covers for multi-frequency cloaking," New J. Phys., Vol. 10, No. 11, 115036, Nov. 2008.        Google Scholar

148. Tricarico, S., F. Bilotti, A. Alu, and L. Vegni, "Plasmonic cloaking for irregular objects with anisotropic scattering properties," Phys. Rev. E, Vol. 81, No. 2, 026602, Feb. 2010.        Google Scholar

149. Kallos, E., C. Argyropoulos, Y. Hao, and A. Alu, "Comparison of frequency responses of cloaking devices under nonmonochromatic illumination ," Phys. Rev. B, Vol. 84, No. 4, 045102, Jul. 2011.        Google Scholar

150. Alu, A., D. Rainwater, and A. Kerkhoff, "Plasmonic cloaking of cylinders: Finite length, oblique illumination and cross-polarization coupling," New J. Phys., Vol. 12, No. 10, 103028, Oct. 2010.        Google Scholar

151. Silveirinha, M. G., A. Alu, and N. Enghet, "Cloaking mechanism with antiphase plasmonic satellites," Phys. Rev. B, Vol. 78, No. 20, 205109, Nov. 2008.        Google Scholar

152. Silveirinha, M. G., A. Alu, and N. Engheta, "Parallel-plate metamaterials for cloaking structures," Phys. Rev. E, Vol. 75, No. 3, 036603, Mar. 2007.        Google Scholar

153. Silveirinha, M. G., A. Alu, and N. Engheta, "Infrared and optical invisibility cloak with plasmonic implants based on scattering cancellation," Phys. Rev. B, Vol. 78, No. 7, 075107, Aug. 2008.        Google Scholar

154. Edwards, B., A. Alu, M. G. Silveirinha, and N. Engheta, "Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials," Phys. Rev. Lett., Vol. 103, No. 15, 153901, Oct. 2009.        Google Scholar

155. Rainwater, D., A. Kerkhoff, K. Melin, J. C. Soric, G. Moreno, and A. Al, "Experimental verification of three-dimensional plasmonic cloaking in free-space," New J. Phys., Vol. 14, No. 1, 013054, Jan. 2012.        Google Scholar

156. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2005.

157. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

158. Alu, A., "Mantle cloak: Invisibility induced by a surface," Phys. Rev. B, Vol. 80, No. 24, 245115, Dec. 2009.        Google Scholar

159. Chen, P.-Y. and A. Alu, "Mantle cloaking using thin patterned metasurfaces," Phys. Rev. B, Vol. 84, No. 20, 205110, Nov. 2011.        Google Scholar

160. Chen, P.-Y., F. Monticone, and A. Alu, "Suppressing the electromagnetic scattering with an helical mantle cloak," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1598-1601, 2011.        Google Scholar

161. Padooru, Y. R., A. B. Yakovlev, P.-Y. Chen, and A. Alu, "Line-source excitation of realistic conformal metasurface cloaks," Journal of Applied Physics, Vol. 112, No. 10, 104902, Nov. 2012.        Google Scholar

162. Padooru, Y. R., A. B. Yakovlev, P.-Y. Chen, and A. Alu, "Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays," Journal of Applied Physics, Vol. 112, No. 3, 034907, Aug. 2012.        Google Scholar

163. Chen, P.-Y. and A. Alu, "Atomically thin surface cloak using graphene monolayers," ACS Nano, Vol. 5, No. 7, 5855-5863, Jul. 2011.        Google Scholar

164. Soric, J. C., P. Y. Chen, A. Kerkhoff, D. Rainwater, K. Melin, and A. Alu, "Demonstration of an ultralow profile cloak for scattering suppression of a finite-length rod in free space," New J. Phys., Vol. 15, No. 3, 033037, Mar. 2013.        Google Scholar

165. Alitalo, P., O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, "Transmission-line networks cloaking objects from electromagnetic fields," IEEE Trans. Antennas Prop., Vol. 56, No. 2, 416-424, 2008.        Google Scholar

166. Alitalo, P., O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, "Correction to ‘transmission-line networks cloaking objects from electromagnetic fields’ [Feb. 08, 416–424]," IEEE Trans. Antennas Prop., Vol. 56, No. 3, 918-918, 2008.        Google Scholar

167. Alitalo, P., S. Ranvier, J. Vehmas, and S. Tretyakov, "A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects," Metamaterials, Vol. 2, No. 4, 206-212, Dec. 2008.        Google Scholar

168. Alitalo, P. and S. Tretyakov, "Electromagnetic cloaking with metamaterials," Materials Today, Vol. 12, No. 3, 22-29, Mar. 2009.        Google Scholar

169. Alitalo, P., F. Bongard, J.-F. Z¨urcher, J. Mosig, and S. Tretyakov, "Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks," Applied Physics Letters, Vol. 94, No. 1, 014103, Jan. 2009.        Google Scholar

170. Tretyakov, S., P. Alitalo, O. Luukkonen, and C. Simovski, "Broadband electromagnetic cloaking of long cylindrical objects," Phys. Rev. Lett., Vol. 103, No. 10, 103905, Sep. 2009.        Google Scholar

171. Alitalo, P. and S. A. Tretyakov, "Electromagnetic cloaking of strongly scattering cylindrical objects by a volumetric structure composed of conical metal plates," Phys. Rev. B, Vol. 82, No. 24, 245111, Dec. 2010.        Google Scholar

172. Alitalo, P., A. E. Culhaoglu, A. V. Osipov, S. Thurner, E. Kemptner, and S. A. Tretyakov, "Bistatic scattering characterization of a three-dimensional broadband cloaking structure," Journal of Applied Physics, Vol. 111, No. 3, 034901-034901-5, 2012.        Google Scholar

173. Milton, G. W. and N.-A. P. Nicorovici, "On the cloaking effects associated with anomalous localized resonance," Proc. R. Soc. A, Vol. 462, No. 2074, 3027-3059, Oct. 2006.        Google Scholar

174. Milton, G. W., N.-A. P. Nicorovici, R. C. McPhedran, and V. A. Podolskiy, "A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous localized resonance," Proc. R. Soc. A, Vol. 461, No. 2064, 3999-4034, Dec. 2005.        Google Scholar

175. Nicorovici, N. A., G. W. Milton, R. C. McPhedran, and L. C. Botten, "Quasistatic cloaking of two-dimensional polarizable discrete systems by anomalous resonance," Opt. Express, Vol. 15, No. 10, 6314-6323, May 2007.        Google Scholar

176. Nicorovici, N.-A. P., R. C. McPhedran, S. Enoch, and G. Tayeb, "Finite wavelength cloaking by plasmonic resonance," New J. Phys., Vol. 10, No. 11, 115020, Nov. 2008.        Google Scholar

177. Lai, Y., H. Chen, Z.-Q. Zhang, and C. T. Chan, "Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell," Phys. Rev. Lett., Vol. 102, No. 9, 093901, Mar. 2009.        Google Scholar

178. Zheng, G., X. Heng, and C. Yang, "A phase conjugate mirror inspired approach for building cloaking structures with left-handed materials," New J. Phys., Vol. 11, No. 3, 033010, Mar. 2009.        Google Scholar

179. Chen, H., Z. Liang, P. Yao, X. Jiang, H. Ma, and C. T. Chan, "Extending the bandwidth of electromagnetic cloaks," Phys. Rev. B, Vol. 76, No. 24, 241104, Dec. 2007.        Google Scholar

180. Miller, D. A. B., "On perfect cloaking," Opt. Express, Vol. 14, No. 25, 12457-12466, Dec. 2006.        Google Scholar

181. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Full-wave invisibility of active devices at all frequencies," Commun. Math. Phys., Vol. 275, No. 3, 749-789, Nov. 2007.        Google Scholar

182. Vasquez, F. G., G. W. Milton, and D. Onofrei, "Active exterior cloaking for the 2D laplace and Helmholtz equations," Phys. Rev. Lett., Vol. 103, No. 7, 073901, Aug. 2009.        Google Scholar

183. Guevara Vasquez, F., G. W. Milton, and D. Onofrei, "Broadband exterior cloaking," Opt. Express, Vol. 17, No. 17, 14800-14805, Aug. 2009.        Google Scholar

184. Ma, Q., Z. L. Mei, S. K. Zhu, T. Y. Jin, and T. J. Cui, "Experiments on active cloaking and illusion for Laplace equation," Phys. Rev. Lett., Vol. 111, No. 17, 173901, Oct. 2013.        Google Scholar

185. Chen, P.-Y., C. Argyropoulos, and A. Alu, "Broadening the cloaking bandwidth with non-foster metasurfaces," Phys. Rev. Lett., Vol. 111, No. 23, 233001, Dec. 2013.        Google Scholar

186. Friot, E., R. Guillermin, and M. Winninger, "Active control of scattered acoustic radiation: A real-time implementation for a three-dimensional object," Acta Acustica United with Acustica, Vol. 92, No. 2, 278-288, Mar. 2006.        Google Scholar

187. Bender, C. M. and S. Boettcher, "Real spectra in non-hermitian Hamiltonians having PT symmetry," Phys. Rev. Lett., Vol. 80, 5243-5246, 1998.        Google Scholar

188. Makris, K. G., R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, "Beam dynamics in PT symmetric optical lattices," Phys. Rev. Lett., Vol. 100, 103904, 2008.        Google Scholar

189. Kulishov, M., J. Laniel, N. Belanger, J. Azana, and D. Plant, "Nonreciprocal waveguide Bragg gratings," Opt. Express, Vol. 13, 3068-3078, 2005.        Google Scholar

190. Razzari, L. and R. Morandotti, "Optics: Gain and loss mixed in the same cauldron," Nature, Vol. 488, 163-164, 2012.        Google Scholar

191. Mostafazadeh, A., "Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies," Phys. Rev. Lett., Vol. 102, 220402, 2009.        Google Scholar

192. Schomerus, H., "Quantum noise and self-sustained radiation of PT-symmetric systems," Phys. Rev. Lett., Vol. 104, 233601, 2010.        Google Scholar

193. Lin, Z., et al. "Unidirectional invisibility induced by PT-symmetric periodic structures," Phys. Rev. Lett., Vol. 106, 213901, 2011.        Google Scholar

194. Fleury, R., D. L. Sounas, and A. Alu, "Negative refraction and planar focusing based on parity-time symmetric metasurfaces ," Phys. Rev. Lett., Vol. 113, No. 2, 023903, Jul. 2014.        Google Scholar

195. Xu, S., X. Cheng, S. Xi, R. Zhang, H. O. Moser, Z. Shen, Y. Xu, Z. Huang, X. Zhang, F. Yu, B. Zhang, and H. Chen, "Experimental demonstration of a free-space cylindrical cloak without superluminal propagation," Phys. Rev. Lett., Vol. 109, No. 22, 223903, Nov. 2012.        Google Scholar

196. Aliev, A. E., Y. N. Gartstein, and R. H. Baughman, "Mirage effect from thermally modulated transparent carbon nanotube sheets," Nanotechnology, Vol. 22, No. 43, 435704, Oct. 2011.        Google Scholar

197. Schittny, R., M. Kadic, T. B¨uckmann, and M. Wegener, "Invisibility cloaking in a diffusive light scattering medium," Science, Vol. 345, No. 6195, 427-429, Jun. 2014.        Google Scholar

198. Liu, Z., X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, "Locally Resonant Sonic Materials," Science, Vol. 289, No. 5485, 1734-1736, 2000.        Google Scholar

199. Li, J. and C. T. Chan, "Double-negative acoustic metamaterial," Phys. Rev. E, Vol. 70, No. 5, 055602, Nov. 2004.        Google Scholar

200. Fang, N., D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, "Ultrasonic metamaterials with negative modulus," Nature Materials, Vol. 5, No. 6, 452-456, 2006.        Google Scholar

201. Lee, S. H., C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, "Acoustic metamaterial with negative density," Physics Letters A, Vol. 373, No. 48, 4464-4469, Dec. 2009.        Google Scholar

202. Bongard, F., H. Lissek, and J. R. Mosig, "Acoustic transmission line metamaterial with negative/zero/positive refractive index ," Phys. Rev. B, Vol. 82, No. 9, 094306, 2010.        Google Scholar

203. Lee, S. H., C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, "Composite acoustic medium with simultaneously negative density and modulus," Phys. Rev. Lett., Vol. 104, No. 5, 054301, Feb. 2010.        Google Scholar

204. Zhou, X. and G. Hu, "Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass," Applied Physics Letters, Vol. 98, No. 26, 263510-263510-3, Jul. 2011.        Google Scholar

205. Liang, Z. and J. Li, "Extreme acoustic metamaterial by coiling up space," Phys. Rev. Lett., Vol. 108, No. 11, 114301, Mar. 2012.        Google Scholar

206. Xie, Y., B.-I. Popa, L. Zigoneanu, and S. A. Cummer, "Measurement of a broadband negative index with space-coiling acoustic metamaterials," Phys. Rev. Lett., Vol. 110, No. 17, 175501, Apr. 2013.        Google Scholar

207. Frenzel, T., J. D. Brehm, T. B¨uckmann, R. Schittny, M. Kadic, and M. Wegener, "Three-dimensional labyrinthine acoustic metamaterials," Applied Physics Letters, Vol. 103, No. 6, 061907, Aug. 2013.        Google Scholar

208. Yang, M., G. Ma, Z. Yang, and P. Sheng, "Coupled membranes with doubly negative mass density and bulk modulus," Phys. Rev. Lett., Vol. 110, No. 13, 134301, Mar. 2013.        Google Scholar

209. Fleury, R. and A. Alu, "Extraordinary sound transmission through density-near-zero ultranarrow channels," Phys. Rev. Lett., Vol. 111, No. 5, 055501, Jul. 2013.        Google Scholar

210. Milton, G. W., M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys., Vol. 8, No. 10, 248, Oct. 2006.        Google Scholar

211. Milton, G. W., "New metamaterials with macroscopic behavior outside that of continuum elastodynamics," New J. Phys., Vol. 9, No. 10, 359, Oct. 2007.        Google Scholar

212. Cummer, S. A. and D. Schurig, "One path to acoustic cloaking," New J. Phys., Vol. 9, No. 3, 45, Mar. 2007.        Google Scholar

213. Chen, H. and C. T. Chan, "Acoustic cloaking in three dimensions using acoustic metamaterials," Applied Physics Letters, Vol. 91, No. 18, 183518, Nov. 2007.        Google Scholar

214. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, J. Pendry, M. Rahm, and A. Starr, "Scattering theory derivation of a 3D acoustic cloaking shell," Phys. Rev. Lett., Vol. 100, No. 2, 024301, Jan. 2008.        Google Scholar

215. Cummer, S. A., M. Rahm, and D. Schurig, "Material parameters and vector scaling in transformation acoustics," New J. Phys., Vol. 10, No. 11, 115025, Nov. 2008.        Google Scholar

216. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Full-wave invisibility of active devices at all frequencies," Commun. Math. Phys., Vol. 275, No. 3, 749-789, Nov. 2007.        Google Scholar

217. Farhat, M., S. Guenneau, S. Enoch, A. Movchan, F. Zolla, and A. Nicolet, "A homogenization route towards square cylindrical acoustic cloaks," New J. Phys., Vol. 10, No. 11, 115030, Nov. 2008.        Google Scholar

218. Milton, G. W. and A. V. Cherkaev, "Which elasticity tensors are realizable?," J. Eng. Mater. Technol., Vol. 117, No. 4, 483-493, Oct. 1995.        Google Scholar

219. Kadic, M., T. Buckmann, N. Stenger, M. Thiel, and M. Wegener, "On the practicability of pentamode mechanical metamaterials," Applied Physics Letters, Vol. 100, No. 19, 191901, May 2012.        Google Scholar

220. Norris, A. N., "Acoustic metafluids," The Journal of the Acoustical Society of America, Vol. 125, No. 2, 839-849, Feb. 2009.        Google Scholar

221. Torrent, D. and J. Sanchez-Dehesa, "Anisotropic mass density by two-dimensional acoustic metamaterials," New J. Phys., Vol. 10, No. 2, 023004, Feb. 2008.        Google Scholar

222. Torrent, D. and J. Sanchez-Dehesa, "Acoustic cloaking in two dimensions: A feasible approach," New J. Phys., Vol. 10, No. 6, 063015, Jun. 2008.        Google Scholar

223. Cheng, Y., F. Yang, J. Y. Xu, and X. J. Liu, "A multilayer structured acoustic cloak with homogeneous isotropic materials," Applied Physics Letters, Vol. 92, No. 15, 151913, Apr. 2008.        Google Scholar

224. Munteanu, L. and V. Chiroiu, "On three-dimensional spherical acoustic cloaking," New J. Phys., Vol. 13, No. 8, 083031, Aug. 2011.        Google Scholar

225. Urzhumov, Y., F. Ghezzo, J. Hunt, and D. R. Smith, "Acoustic cloaking transformations from attainable material properties," New J. Phys., Vol. 12, No. 7, 073014, Jul. 2010.        Google Scholar

226. Zhang, S., C. Xia, and N. Fang, "Broadband acoustic cloak for ultrasound waves," Phys. Rev. Lett., Vol. 106, No. 2, 024301, Jan. 2011.        Google Scholar

227. Popa, B.-I., L. Zigoneanu, and S. A. Cummer, "Experimental acoustic ground cloak in air," Phys. Rev. Lett., Vol. 106, No. 25, 253901, Jun. 2011.        Google Scholar

228. Farhat, M., S. Guenneau, and S. Enoch, "Ultrabroadband elastic cloaking in thin plates," Phys. Rev. Lett., Vol. 103, No. 2, 024301, Jul. 2009.        Google Scholar

229. Brun, M., S. Guenneau, and A. B. Movchan, "Achieving control of in-plane elastic waves," Applied Physics Letters, Vol. 94, No. 6, 061903, Feb. 2009.        Google Scholar

230. Stenger, N., M. Wilhelm, and M. Wegener, "Experiments on elastic cloaking in thin plates," Phys. Rev. Lett., Vol. 108, No. 1, 014301, Jan. 2012.        Google Scholar

231. Guild, M. D., A. Alu, and M. R. Haberman, "Cancellation of acoustic scattering from an elastic sphere," The Journal of the Acoustical Society of America, Vol. 129, No. 3, 1355-1365, Mar. 2011.        Google Scholar

232. Guild, M. D., M. R. Haberman, and A. Alu, "Plasmonic cloaking and scattering cancelation for electromagnetic and acoustic waves," Wave Motion, Vol. 48, No. 6, 468-482, 2011.        Google Scholar

233. Guild, M. D., M. R. Haberman, and A. Alu, "Plasmonic-type acoustic cloak made of a bilaminate shell," Phys. Rev. B, Vol. 86, No. 10, 104302, Sep. 2012.        Google Scholar

234. Farhat, M., P.-Y. Chen, S. Guenneau, S. Enoch, and A. Alu, "Frequency-selective surface acoustic invisibility for three-dimensional immersed objects," Phys. Rev. B, Vol. 86, No. 17, 174303, Nov. 2012.        Google Scholar

235. Sanchis, L., V. M. Garcia-Chocano, R. Llopis-Pontiveros, A. Climente, J. Mart´ınez-Pastor, F. Cervera, and J. Sanchez-Dehesa, "Three-dimensional axisymmetric cloak based on the cancellation of acoustic scattering from a sphere," Phys. Rev. Lett., Vol. 110, No. 12, 124301, Mar. 2013.        Google Scholar

236. Martin, T. P. and G. J. Orris, "Hybrid inertial method for broadband scattering reduction," Applied Physics Letters, Vol. 100, No. 3, 033506, Jan. 2012.        Google Scholar

237. Li, N., J. Ren, L. Wang, G. Zhang, P. Hanggi, and B. Li, "Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond," Rev. Mod. Phys., Vol. 84, No. 3, 1045-1066, Jul. 2012.        Google Scholar

238. Fan, C. Z., Z., Y. Gao, and J. P. Huang, "Shaped graded materials with an apparent negative thermal conductivity," Applied Physics Letters, Vol. 92, No. 25, 251907, Jun. 2008.        Google Scholar

239. Chen, T., C.-N. Weng, and J.-S. Chen, "Cloak for curvilinearly anisotropic media in conduction," Applied Physics Letters, Vol. 93, No. 11, 114103, Sep. 2008.        Google Scholar

240. Li, J. Y., Y. Gao, and J. P. Huang, "A bifunctional cloak using transformation media," Journal of Applied Physics, Vol. 108, No. 7, 074504, Oct. 2010.        Google Scholar

241. Guenneau, S., C. Amra, and D. Veynante, "Transformation thermodynamics: Cloaking and concentrating heat flux," Opt. Express, Vol. 20, No. 7, 8207-8218, Mar. 2012.        Google Scholar

242. Narayana, S. and Y. Sato, "Heat flux manipulation with engineered thermal materials," Phys. Rev. Lett., Vol. 108, No. 21, 214303, May 2012.        Google Scholar

243. Narayana, S., S. Savo, and Y. Sato, "Transient heat flux shielding using thermal metamaterials," Applied Physics Letters, Vol. 102, No. 20, 201904, May 2013.        Google Scholar

244. Dede, E. M., T. Nomura, P. Schmalenberg, and J. S. Lee, "Heat flux cloaking, focusing, and reversal in ultra-thin composites considering conduction-convection effects," Applied Physics Letters, Vol. 103, No. 6, 063501, Aug. 2013.        Google Scholar

245. Hin Ooi, E. and V. Popov, "Transformation thermodynamics for heat flux management based on segmented thermal cloaks," The European Physical Journal Applied Physics, Vol. 63, No. 1, 10903, Jul. 2013.        Google Scholar

246. Schittny, R., M. Kadic, S. Guenneau, and M. Wegener, "Experiments on transformation thermodynamics: Molding the flow of heat," Phys. Rev. Lett., Vol. 110, No. 19, 195901, May 2013.        Google Scholar

247. Leonhardt, U., "Applied physics: Cloaking of heat," Nature, Vol. 498, No. 7455, 440-441, Jun. 2013.        Google Scholar

248. Xu, H., X. Shi, F. Gao, H. Sun, and B. Zhang, "Ultrathin three-dimensional thermal cloak," Phys. Rev. Lett., Vol. 112, No. 5, 054301, Feb. 2014.        Google Scholar

249. Alu, A., "Thermal cloaks get hot," Physics, Vol. 7, No. 12 (3 pages), Feb. 3, 2014.        Google Scholar

250. Han, T., X. Bai, D. Gao, J. T. L. Thong, B. Li, and C.-W. Qiu, "Experimental demonstration of a bilayer thermal cloak," Phys. Rev. Lett., Vol. 112, No. 5, 054302, Feb. 2014.        Google Scholar

251. Zhang, S., D. A. Genov, C. Sun, and X. Zhang, "Cloaking of matter waves," Phys. Rev. Lett., Vol. 100, No. 12, 123002, Mar. 2008.        Google Scholar

252. Greenleaf, A., Y. Kurylev, M. Lassas, and G. Uhlmann, "Approximate quantum cloaking and almost-trapped states," Phys. Rev. Lett., Vol. 101, No. 22, 220404, Nov. 2008.        Google Scholar

253. Lin, D.-H., "Cloaking spin-1/2 matter waves," Phys. Rev. A, Vol. 81, No. 6, 063640, Jun. 2010.        Google Scholar

254. Lin, D.-H., "Cloaking two-dimensional fermions," Phys. Rev. A, Vol. 84, No. 3, 033624, 2011.        Google Scholar

255. Lin, D.-H. and P.-G. Luan, "Cloaking matter waves around a Dirac monopole," Physics Letters A, Vol. 376, No. 5, 675-678, Jan. 2012.        Google Scholar

256. Fleury, R. and A. Alu, "Quantum cloaking based on scattering cancellation," Phys. Rev. B, Vol. 87, No. 4, 045423, Jan. 2013.        Google Scholar

257. Liao, B., M. Zebarjadi, K. Esfarjani, and G. Chen, "Cloaking core-shell nanoparticles from conducting electrons in solids," Phys. Rev. Lett., Vol. 109, No. 12, 126806, 2012.        Google Scholar

258. Fleury, R. and A. Alu, "Furtive quantum sensing using matter-wave cloaks," Phys. Rev. B, Vol. 87, No. 20, 201106, May 2013.        Google Scholar

259. Greenleaf, A., A., Y. Kurylev, M. Lassas, U. Leonhardt, and G. Uhlmann, "Cloaked electromagnetic, acoustic, and quantum amplifiers via transformation optics," PNAS, Vol. 109, No. 26, 10169-10174, Jun. 2012.        Google Scholar

260. Liao, B., M. Zebarjadi, K. Esfarjani, and G. Chen, "Isotropic and energy-selective electron cloaks on graphene," Phys. Rev. B, Vol. 88, No. 15, 155432, Oct. 2013.        Google Scholar

261. Fleury, R. and A. Alu, "Exotic properties and potential applications of quantum metamaterials," Appl. Phys. A, Vol. 109, No. 4, 781-788, Dec. 2012.        Google Scholar

262. Silveirinha, M. G. and N. Engheta, "Effective medium approach to electron waves: Graphene superlattices," Phys. Rev. B, Vol. 85, No. 19, 195413, May 2012.        Google Scholar

263. Silveirinha, M. G. and N. Engheta, "Transformation electronics: Tailoring the effective mass of electrons," Phys. Rev. B, Vol. 86, No. 16, 161104, Oct. 2012.        Google Scholar

264. Silveirinha, M. G. and N. Engheta, "Metamaterial-inspired model for electron waves in bulk semiconductors," Phys. Rev. B, Vol. 86, No. 24, 245302, Dec. 2012.        Google Scholar

265. Chen, H., J. Yang, J. Zi, and C. T. Chan, "Transformation media for linear liquid surface waves," EPL, Vol. 85, No. 2, 24004, Jan. 2009.        Google Scholar

266. Farhat, M., S. Enoch, S. Guenneau, and A. B. Movchan, "Broadband cylindrical acoustic cloak for linear surface waves in a fluid," Phys. Rev. Lett., Vol. 101, No. 13, 134501, Sep. 2008.        Google Scholar

267. Harrington, R. F., "Theory of loaded scatterers," Proc. IEEE, Vol. 3, No. 4, 617-623, Apr. 1964.        Google Scholar

268. Schindler, J. K., R. B. Mack, and P. Blacksmith, "The control of electromagnetic scattering by impedance loading," Proc. IEEE, Vol. 53, No. 8, 993-1004, Aug. 1965.        Google Scholar

269. Green, R. B., "Scattering from conjugate-matched antennas," IEEE Trans. Antennas Prop., Vol. 14, No. 1, 17-21, Jan. 1966.        Google Scholar

270. Hansen, R. C., "Relationships between antennas as scatters and as radiators," Proc. IEEE, Vol. 77, No. 5, 659-662, May 1989.        Google Scholar

271. Andersen, J. B. and A. Frandsen, "Absorption efficiency of receiving antennas," IEEE Trans. Antennas Prop., Vol. 53, No. 9, 2843-2849, Sep. 2005.        Google Scholar

272. Kwon, D. H. and D. M. Pozar, "Optimal characteristics of an arbitrary receive antenna," IEEE Trans. Antennas Prop., Vol. 57, No. 12, 3720-3727, Dec. 2009.        Google Scholar

273. Kwon, D. H. and D. M. Pozar, "Design of received and scattered powers for dipole arrays using load optimization," 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), Jul. 2010.        Google Scholar

274. Karilainen, A. O. and S. A. Tretyakov, "Circularly polarized receiving antenna incorporating two helices to achieve low backscattering," IEEE Trans. Antennas Prop., Vol. 60, No. 7, 3471-3475, Jul. 2012.        Google Scholar

275. Alu, A. and N. Engheta, "Cloaking a sensor," Phys. Rev. Lett., Vol. 102, 233901, Jun. 2009.        Google Scholar

276. Alu, A. and N. Engheta, "Cloaking a receiving antenna or a sensor with plasmonic metamaterials," Metamaterials, Vol. 4, No. 4, 153-159, Mar. 2010.        Google Scholar

277. Alu, A. and S. Maslovski, "Power relations and a consistent analytical model for receiving wire antennas," IEEE Trans. Antennas Prop., Vol. 58, No. 5, 1436-1448, May 2010.        Google Scholar

278. Soric, J. C., R. Fleury, A. Monti, A. Toscano, F. Bilotti, and A. Alu, "Controlling scattering and absorption with metamaterial covers," IEEE Trans. Antennas Prop., Vol. 62, No. 8, 4220-4229, Jul. 2014.        Google Scholar

279. Kwon, D. H. and D. H. Werner, "Restoration of antenna parameters in scattering environments using electromagnetic cloaking," Appl. Phys. Lett., Vol. 92, No. 11, 113507, Mar. 2008.        Google Scholar

280. Monti, A., A. Toscano, and F. Bilotti, "Metasurface mantle cloak for antenna applications," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), Jul. 2012.        Google Scholar

281. Valagiannopoulos, C. A. and N. L. Tsitsas, "Integral equation analysis of a low-profile receiving planar microstrip antenna with a cloaking substrate," Radio Sci., Vol. 47, RS004878, Apr. 2012.        Google Scholar

282. Vehmas, J., P. Alitalo, and S. Tretyakov, "Experimental demonstration of antenna blockage reduction with a transmission-line cloak," IET Microw. Antennas Propag., Vol. 6, No. 7, 830-834, Jan. 2012.        Google Scholar

283. Monti, A., J. Soric, A. Alu, F. Bilotti, A. Toscano, and L. Vegni, "Overcoming mutual blockage between neighboring dipole antennas using a low-profile patterned metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1414, 2012.        Google Scholar

284. Alu, A. and N. Engheta, "Cloaked near-field scanning optical microscope tip for noninvasive near-field imaging," Phys. Rev. Lett., Vol. 105, No. 26, 263906, Dec. 2010.        Google Scholar

285. Bilotti, F., S. Tricarico, F. Pierini, and L. Vegni, "Cloaking apertureless near-field scanning optical microscopy tips," Optics Lett., Vol. 36, No. 26, 211-213, Jan. 2011.        Google Scholar

286. Fan, P., U. K. Chettiar, L. Cao, F. Afshinmanesh, N. Engheta, and M. L. Brongersma, "An invisible metal-semiconductor photodetector," Nature Photonics, Vol. 8, 380-385, May 2012.        Google Scholar

287. Fleury, R., J. Soric, and A. Alu, "Physical bounds on absorption and scattering for cloaked sensors," Phys. Rev. B, Vol. 89, No. 4, 045122, 12 pages, Jan. 15, 2014.        Google Scholar

288. Alu, A. and N. Engheta, "How does zero forward-scattering in magnetodielectric nanoparticles comply with the optical theorem?," J. Nanophoton., Vol. 4, No. 1, 041590, May 2010.        Google Scholar

289. Zhang, B., H. Chen, B. I. Wu, and J. A. Kong, "Extraordinary surface voltage effect in the invisibility cloak with an active device inside," Phys. Rev. Lett., Vol. 100, 063904, Feb. 2008.        Google Scholar

290. Xu, T., X. F. Zhu, B. Liang, Y. Li, X. Y. Zou, and J. C. Cheng, "Scattering reduction for an acoustic sensor using a multilayer shell comprising a pair of homogenous isotropic single-negative media," Appl. Phys. Lett., Vol. 101, 033509, Jul. 2012.        Google Scholar