Vol. 151
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-04-07
A Singularity Free MoM -Type of Formulation Using the Dipole-Moment-Based Approach (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 151, 33-54, 2015
Abstract
In this work we present a new physics-based approach for formulating MoM problems based on the use of dipole moments (DMs) --- as opposed to the conventional Green's functions. The proposed technique is valid over the entire frequency range without any need for special treatments and is also free of singularities associated with the Green's function. The DM approach can be used equally well to both PEC and Dielectric objects. We also introduce certain refinements to the DM method to improve its computational efficiency like the use of higher-order basis functions, combining the DM with the Characteristic Basis Function Method (CBFM), the use of closed-form expressions for the calculation of interaction matrix elements and employing Fast Matrix Generation (FMG) for electrically large problems. We also demonstrate ways to incorporate lumped loads, capture sharp resonances even at low frequencies, calculate the input impedance of small antennas, calculate fields from irregular geometries; from faceted surfaces; from geometries with slot and slit; and also demonstrate the capability to model microstrip line type of geometries with fine features.
Citation
Kadappan Panayappan, and Raj Mittra, "A Singularity Free MoM -Type of Formulation Using the Dipole-Moment-Based Approach (Invited Paper)," Progress In Electromagnetics Research, Vol. 151, 33-54, 2015.
doi:10.2528/PIER15011406
References

1. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, New Jersey, 1997.
doi:10.1109/9780470544303

2. Harrington, R. F., Field Computation by Moment Methods, The Macmillan Company, New York, 1968.

3. Mittra, R., Computer Techniques for Electromagnetics, Hemisphere Publishing Corporation, New York, 1987.

4. Harrington, R., Time-harmonic Electromagnetic Fields, IEEE Press, New Jersey, 2001.
doi:10.1109/9780470546710

5. Bringuier, J., "Multi-scale techniques in computational electromagnetics,", Ph.D. Dissertation, The Pennsylvania State University, 2010.

6. "Numerical electromagnics code,", [Online], available: http://www.nec2.org/.

7. Panayappan, K., "Novel frequency domain techniques and advances in finite difference time domain method (FDTD) for efficient solution of multiscale electromagnetic problems,", Ph.D. Dissertation, The Pennsylvania State University, 2013.

8. Mittra, R., Computational Electromagnetics: Recent Advances and Engineering Applications, Springer-Verlag, New York, USA, 2013.

9. Rao, S., D. Wilton, and A. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

10. Lucente, E., A. Monorchio, and R. Mittra, "An iteration-free MoM approach based on excitation independent characteristic basis functions for solving large multiscale electromagnetic scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 56, 999-1007, April 2008.

11. Mittra, R. and K. Du, "Characteristic basis function method for iteration-free solution of large method of moments problems," Progress In Electromagnetics Research B, Vol. 6, 307-336, 2008.
doi:10.2528/PIERB08031206

12. Mehta, N., "Numerical analysis of frequency selective surfaces,", Master’s Thesis, The Pennsylvania State University, 2010.

13. Kwon, S. J. and R. Mittra, "Impedance matrix generation by using fast matrix generation (FMG) technique," Microwave and Optical Technology Letters, Vol. 51, 204-213, January 2009.
doi:10.1002/mop.24015

14. Jordan, E. and K. Balmain, Electromagnetic Waves and Radiating Systems, Prentice-Hall Series in Electrical Engineering, Prentice-Hall, 1968.