Vol. 151
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-04-13
Meander-Line Based Broadband Artificial Material for Enhancing the Gain of Printed End-Fire Antenna
By
Progress In Electromagnetics Research, Vol. 151, 55-63, 2015
Abstract
A broadband artificial material based on meander-line (ML) structures is proposed for enhancing the gain of printed end-fire antennas. The ML based material with an effective index of refraction greater than 1 behaves as a dielectric lens in improving the directivity of an end-fire antenna. The electric field intensity distribution can be changed by the material, resulting in a more directional emission. Simulated results indicate extending the length or width of the material can lead to more significant gain enhancement without destroying the impedance bandwidth of the antenna. Three printed end-fire antennas with and without material loading are fabricated and measured. The measurements show that end-fire antennas loaded with two and four rows of ML structures can obtain gain increments of 0.6-3.6 dB and 1.2-5.7 dB, respectively, and that the radiation patterns are narrowed in both E- and H-planes over the whole operating band (6-11.5 GHz).
Citation
Lei Chen, Zhen-Ya Lei, and Xiao-Wei Shi, "Meander-Line Based Broadband Artificial Material for Enhancing the Gain of Printed End-Fire Antenna," Progress In Electromagnetics Research, Vol. 151, 55-63, 2015.
doi:10.2528/PIER15021401
References

1. Silveirinha, M. and N. Engheta, "Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media," Physics Rev. B, Vol. 75, No. 7, 075119, 2007.
doi:10.1103/PhysRevB.75.075119

2. Liu, R., A. Degiron, J. J. Mock, and D. R. Smith, "Negative index material composed of electric and magnetic resonators," Applied Physics Letters, Vol. 90, No. 26, 263504, 2007.
doi:10.1063/1.2752120

3. Turpin, J. P., Q.Wu, D. H. Werner, B.Martin, M. Bray, and E. Lier, "Near-zero-indexmetamaterial lens combined with AMC metasurface for high-directivity low-profile antennas," IEEE Trans. on Antennas and Propagat., Vol. 62, No. 1, 1928-1936, 2014.
doi:10.1109/TAP.2014.2302845

4. Jiang, Z., Q. Wu, D. Brocker, P. Sieber, and D. Werner, "A low-profile high-gain substrate-integrated waveguide slot antenna enabled by an ultrathin anisotropic zero-index metamaterial coating," IEEE Trans. on Antennas and Propagat., Vol. 62, No. 3, 1173-1183, 2014.
doi:10.1109/TAP.2013.2294354

5. Aghanejad, ., H. Abiri, and A. Yahaghi, "Design of high-gain lens antenna by gradient-index metamaterials using transformation optics," IEEE Trans. on Antennas and Propagat., Vol. 60, 4074-4081, 2012.
doi:10.1109/TAP.2012.2207051

6. Chen, X., H. F. Ma, X. Y. Zou, W. X. Jiang, and T. J. Cui, "Three-dimensional broadband andhigh-directivity lens antenna made of metamaterials," Journal of Applied Physics, Vol. 110, No. 4, 044904, 2011.
doi:10.1063/1.3622596

7. Yuan, L., W. Tang, H. Li, Q. Cheng, and T. Cui, "Three-dimensional anisotropic zero-index lenses," IEEE Trans. on Antennas and Propagat, Vol. 62, No. 2, 4135-4142, 2013.

8. Ramaccia, D., F. Scattone, F. Bilotti, and A. Toscano, "Broadband compact horn antennas by using EPS-ENZ metamaterial lens," IEEE Trans. on Antennas and Propagat., Vol. 61, No. 6, 2929-2937, 2013.
doi:10.1109/TAP.2013.2250235

9. Lee, Y. J., J. Yeo, R. Mittra, and W. S. Park, "Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters," IEEE Trans. on Antennas and Propagat., Vol. 53, No. 1, 224-235, 2005.
doi:10.1109/TAP.2004.840521

10. Zhou, B. and T. J. Cui, "Directivity enhancement to vivaldi antennas using compactly anisotropic zero-index metamaterials," IEEE Antennas and Wireless Propagat. Lett., Vol. 10, 326-329, 2011.
doi:10.1109/LAWP.2011.2142170

11. Sun, M., Z. N. Chen, and X. Qing, "Gain enhancement of 60-GHz antipodal tapered slot antenna using zero-index metamaterial," IEEE Trans. on Antennas and Propagat., Vol. 61, No. 4, 1741-6, 2013.
doi:10.1109/TAP.2012.2237154

12. Chen, L., Z. Lei, R. Yang, J. Fan, and X. Shi, "A broadband artificial material for gain enhancement of antipodal tapered slot antenna," IEEE Trans. on Antennas and Propagat., Vol. 63, No. 1, 395-400, 2015.
doi:10.1109/TAP.2014.2365044

13. Cao, W., B. Zhang, A. Liu, T. Yu, D. Guo, and Y. Wei, "Gain enhancement for broadband periodic endfire antenna by using split-ring resonator structures," IEEE Trans. on Antennas and Propagat., Vol. 60, No. 7, 3513-3516, 2012.
doi:10.1109/TAP.2012.2196959

14. Cao, W., B. Zhang, A. Liu, T. Yu, D. Guo, and Y. Wei, "Broadband high-gain periodic endfire antenna by using I-shaped resonator (ISR) structures," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1470-1473, 2012.

15. Wang, H., S.-F. Liu, L. Chen, W.-T. Li, and X.-W. Shi, "Gain enhancement for broadband vertical planar printed antenna with H-shaped resonator structures," IEEE Trans. on Antennas and Propagat., Vol. 62, No. 8, 4411-4415, 2014.
doi:10.1109/TAP.2014.2325955

16. Liu, R., Q. Cheng, J. Y. Chin, J. J. Mock, and T. J. Cui, "Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials," Optics express, Vol. 17, No. 23, 21030-21041, 2009.
doi:10.1364/OE.17.021030

17. Tang, W. X., H. Zhao, X. Zhou, J. Y. Chin, and T.-J. Cui, "Negative index material composed of meander line and SRRs," Progress In Electromagnetics Research B, Vol. 8, 103-114, 2008.
doi:10.2528/PIERB08051201

18. Qu, S.-W., J.-L. Li, Q. Xue, and C.-H. Chan, "Wideband periodic endfire antenna with bowtie dipoles," IEEE Antennas Wireless Propag. Lett., Vol. 7, 314-317, 2008.

19. Smith, D., S. Schultz, P. Markos, and C. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Physics Rev. B, Vol. 65, No. 19, 195104, 2002.
doi:10.1103/PhysRevB.65.195104