1. Kimura, T., T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, "Magnetic control of ferroelectric polarization," Nature, Vol. 426, 55-58, 2003.
doi:10.1038/nature02018 Google Scholar
2. Zhang, X. C., Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, "Magnetic switching of THz beams," Applied Physics Letters, Vol. 67, No. 17, 2003-2005, 1993.
doi:10.1063/1.109514 Google Scholar
3. Liu, K., W. Jiang, F. Sun, and S. He, "Experimental realization of strong DC magnetic enhancement with transformation optics," Progress In Electromagnetics Research, Vol. 146, 187-194, 2014.
doi:10.2528/PIER14042704 Google Scholar
4. Chin, J. Y., et al. "Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation," Nature Communications, Vol. 4, 1599, 2013.
doi:10.1038/ncomms2609 Google Scholar
5. Liu, M. and X. Zhang, "Plasmon-boosted magneto-optics," Nature Photonics, Vol. 7, 429-430, 2013.
doi:10.1038/nphoton.2013.134 Google Scholar
6. Sessel, G. K. and I. W. Hofsajer, "Synthesis of magnetic field concentrated in one dimension," Progress In Electromagnetics Research, Vol. 144, 141-150, 2014.
doi:10.2528/PIER13121304 Google Scholar
7. Zvezdin, A. K. and V. A. Kotov, Modern magnetooptics and Magnetooptical Materials, Taylor & Francis, New York, 1997.
8. Potton, R. J., "Reciprocity in optics," Reports on Progress in Physics, Vol. 67, 717, 2004.
doi:10.1088/0034-4885/67/5/R03 Google Scholar
9. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.
10. Inoue, M., M. Levy, and A. Baryshev, Magnetophotonics: From Theory to Applications, Springer, Berlin, 2013.
11. Baibich, M. N., J. M. Broto, A. Fert, N. V. Dau, and F. Petroff, "Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices," Physical Review Letters, Vol. 61, 2472-2475, 1988.
doi:10.1103/PhysRevLett.61.2472 Google Scholar
12. Binasch, G., P. Grunberg, F. Saurenbach, and W. Zinn, "Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange," Physical Review B, Vol. 39, 1989. Google Scholar
13. Correa, M. A., F. Bohn, C. Chesman, R. B. Silva, A. D. C. Viegas, and R. L. Sommer, "Tailoring the magnetoimpedance effect of NiFe/Ag multilayer," Journal of Physics D: Applied Physics, Vol. 43, 295004, 2010.
doi:10.1088/0022-3727/43/29/295004 Google Scholar
14. Pershan, P. S., "Magneto-optical effects," Journal of Applied Physics, Vol. 38, No. 3, 1482, 1967.
doi:10.1063/1.1709678 Google Scholar
15. Freiser, M., "A survey of magnetooptic effects," IEEE Transactions on Magnetics, Vol. 4, No. 2, 152-161, 1968.
doi:10.1109/TMAG.1968.1066210 Google Scholar
16. Silveririnha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Physical Review Letters, Vol. 97, 157403, 2006.
doi:10.1103/PhysRevLett.97.157403 Google Scholar
17. Edwards, B., A. Alu, M. E. Young, M. Silveririnha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Physical Review Letters, Vol. 100, 033903, 2008.
doi:10.1103/PhysRevLett.100.033903 Google Scholar
18. Maas, R., J. Parsons, N. Engheta, and A. Polman, "Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths," Nature Photonics, Vol. 7, 907-912, 2013.
doi:10.1038/nphoton.2013.256 Google Scholar
19. Vesseur, E. J., T. Conenen, H. Caglayan, N. Engheta, and A. Polman, "Experimental verification of n = 0 structures for visible light," Physical Review Letters, Vol. 110, 0139202, 2013. Google Scholar
20. Engheta, N., "Pursuing near-zero response," Science, Vol. 340, 286, 2013.
doi:10.1126/science.1235589 Google Scholar
21. Davoyan, A. R., A. M. Mahmoud, and N. Engheta, "Optical isolation with epsilon-near-zero metamaterials," Optical Express, Vol. 21, 3279, 2013.
doi:10.1364/OE.21.003279 Google Scholar
22. Lin, X., Z.Wang, F. Gao, B. Zhang, and H. Chen, "Atomically thin nonreciprocal optical isolation," Scientific Reports, Vol. 4, 4190, 2014. Google Scholar
23. Lin, X., Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, "Unidirectional surface plasmons in nonreciprocal graphene," New Journal of Physics, Vol. 15, 113003, 2013.
doi:10.1088/1367-2630/15/11/113003 Google Scholar
24. Davoyan, A. R. and N. Engheta, "Theory of wave propagation in magnetized near-zero-epsilon metamaterials: Evidence for one-way photonic states and magnetically switched transparency and opacity," Physical Review Letters, Vol. 111, 257401, 2013.
doi:10.1103/PhysRevLett.111.257401 Google Scholar
25. Chettiar, U. K., A. R. Davoyan, and N. Engheta, "Hotspots from nonreciprocal surface waves," Optical Letters, Vol. 39, 1760, 2014.
doi:10.1364/OL.39.001760 Google Scholar
26. Davoyan, A. and N. Engheta, "Electrically controlled one-way photon flow in plasmonic nanostructures," Nature Communications, Vol. 5, 5250, 2014.
doi:10.1038/ncomms6250 Google Scholar
27. Bellan, P. W., Fundamental of Plasma Physics, Cambridge University Press, Cambridge, England, 2006.
doi:10.1017/CBO9780511807183
28. Landau, L. D., L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, Butterworth-Heinemann, Oxford, England, 1984.
29. Camley, R. E., "Nonreciprocal surface modes," Surface Science Reports, Vol. 7, 103, 1987.
doi:10.1016/0167-5729(87)90006-9 Google Scholar
30. Bliokh, Y. P., J. Felsteiner, and Y. Z. Slutsker, "Total absorption of an electromagnetic wave by an overdense plasma," Physical Review Letters, Vol. 95, 165003, 2005.
doi:10.1103/PhysRevLett.95.165003 Google Scholar