1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907 Google Scholar
2. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493 Google Scholar
3. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
4. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901 Google Scholar
5. Liu, R., C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science, Vol. 323, 366-369, 2009.
doi:10.1126/science.1166949 Google Scholar
6. Valentine, J., J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nat. Mat., Vol. 8, 568-571, 2009.
doi:10.1038/nmat2461 Google Scholar
7. Kallos, E., C. Argyropoulos, and Y. Hao, "Ground-plane quasicloaking for free space," Phys. Rev. A, Vol. 79, 063825, 2009.
doi:10.1103/PhysRevA.79.063825 Google Scholar
8. Jiang, W. X., T. J. Cui, X. M. Yang, Q. Cheng, R. Liu, and D. R. Smith, "Invisibility cloak without singularity," Appl. Phys. Lett., Vol. 93, 194102, 2008.
doi:10.1063/1.3026532 Google Scholar
9. Leonhardt, U. and T. Tyc, "Broadband invisibility by non-euclidean cloaking," Science, Vol. 323, 110-112, 2009.
doi:10.1126/science.1166332 Google Scholar
10. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Phot., Vol. 1, 224-227, 2007.
doi:10.1038/nphoton.2007.28 Google Scholar
11. Alu, A. and N. Engheta, "Multifrequency optical invisibility cloak with layered plasmonic shells," Phys. Rev. Lett., Vol. 100, 113901, 2008.
doi:10.1103/PhysRevLett.100.113901 Google Scholar
12. Kante, B., D. Germain, and A. de Lustrac, "Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies," Phys. Rev. B, Vol. 80, 201104, 2009.
doi:10.1103/PhysRevB.80.201104 Google Scholar
13. Chen, H. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, 241105, 2007.
doi:10.1063/1.2748302 Google Scholar
14. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwells equations," Photon. Nanostruct. Fundam. Appl., Vol. 6, 87-95, 2008.
doi:10.1016/j.photonics.2007.07.013 Google Scholar
15. Jiang, W. X., T. J. Cui, Q. Cheng, J. Y. Chin, X. M. Yang, R. Liu, and D. R. Smith, "Design of arbitrarily shaped concentrators based on conformally optical transformation of nonuniform rational B-spline surfaces," Appl. Phys. Lett., Vol. 92, 264101, 2008.
doi:10.1063/1.2951485 Google Scholar
16. Greenleaf, A., Y. Kurylev, and M. Lassas, "Electromagnetic wormholes and virtual magnetic monopoles from metamaterials," Phys. Rev. Lett., Vol. 99, 183901, 2007.
doi:10.1103/PhysRevLett.99.183901 Google Scholar
17. Kildishev, A. V. and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett., Vol. 32, 3432-3434, 2007.
doi:10.1364/OL.32.003432 Google Scholar
18. O’Brien, S. and J. B. Pendry, "Magnetic activity at infrared frequencies in structured metallic photonic crystals," J. Phys. Condens. Matter, Vol. 14, 6383-6394, 2002.
doi:10.1088/0953-8984/14/25/307 Google Scholar
19. Zhou, J., T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Phys. Rev. Lett., Vol. 95, 223902, 2005.
doi:10.1103/PhysRevLett.95.223902 Google Scholar
20. Ishikawa, A., T. Tanaka, and S. Kawata, "Negative magnetic permeability in the visible light region," Phys. Rev. Lett., Vol. 95, 237401, 2005.
doi:10.1103/PhysRevLett.95.237401 Google Scholar
21. Kante, B., A. de Lustrac, J.-M. Lourtioz, and F. Gadot, "Engineering resonances in infrared metamaterials," Opt. Express, Vol. 16, 6774-6784, 2008.
doi:10.1364/OE.16.006774 Google Scholar
22. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two dimensional equivalents of metamaterials," IEEE Antennas Propagat. Mag., Vol. 54, 10-35, 2012.
doi:10.1109/MAP.2012.6230714 Google Scholar
23. Kante, B., J.-M. Lourtioz, and A. de Lustrac, "Infrared metafilms on a dielectric substrate," Phys. Rev. B, Vol. 80, 205120, 2009.
doi:10.1103/PhysRevB.80.205120 Google Scholar
24. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, 333-337, 2011.
doi:10.1126/science.1210713 Google Scholar
25. Yu, N. and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials, Vol. 13, 139-150, 2014.
doi:10.1038/nmat3839 Google Scholar
26. Zhang, K., X. Ding, L. Zhang, and Q. Wu, "Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions," New Journal of Physics, Vol. 16, No. 10, 103020, 2014.
doi:10.1088/1367-2630/16/10/103020 Google Scholar
27. Zhang, J., Z. L. Mei, W. R. Zhang, F. Yang, and T. J. Cui, "An ultrathin directional carpet cloak based on generalized Snell’s law," Appl. Phys. Lett., Vol. 103, 151115, 2013.
doi:10.1063/1.4824898 Google Scholar
28. Zou, L., M. Lopez-Garc´ıa, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, R. Oulton, M. Klemm, and C. Fumeaux, "Spectral and angular characteristics of dielectric resonator metasurface at optical frequencies," Appl. Phys. Lett., Vol. 105, 191109, 2014.
doi:10.1063/1.4901735 Google Scholar
29. CST Studio Suite 2014, http://www.CST.com, . Google Scholar