1. Griffiths, H., "Magnetic induction tomography," Measurement Science & Technology, Vol. 12, 1126-1131, 2001.
doi:10.1088/0957-0233/12/8/319 Google Scholar
2. Peyton, A. J., Z. Z. Yu, G. Lyon, S. AlZeibak, J. Ferreira, J. Velez, F. Linhares, A. R. Borges, H. L. Xiong, N. H. Saunders, and M. S. Beck, "An overview of electromagnetic inductance tomography: Description of three different systems," Measurement Science & Technology, Vol. 7, 261-271, 1996.
doi:10.1088/0957-0233/7/3/006 Google Scholar
3. Ke, L., X. Lin, and Q. Du, "An improved back-projection algorithm for magnetic induction tomography image reconstruction," Advanced Materials Research, Vol. 647, 630-635, 2013.
doi:10.4028/www.scientific.net/AMR.647.630 Google Scholar
4. Korjenevsky, A., V. Cherepenin, and S. Sapetsky, "Magnetic induction tomography: Experimental realization," Physiological Measurement, Vol. 21, 89-94, 2000.
doi:10.1088/0967-3334/21/1/311 Google Scholar
5. Merwa, R., K. Hollaus, P. Brunner, and H. Scharfetter, "Solution of the inverse problem of magnetic induction tomography (MIT)," Physiological Measurement, Vol. 26, S241-S250, 2005.
doi:10.1088/0967-3334/26/2/023 Google Scholar
6. Scharfetter, H., K. Hollaus, J. Rosell-Ferrer, and R. Merwa, "Single-step 3-D image reconstruction in magnetic induction tomography: Theoretical limits of spatial resolution and contrast to noise ratio," Annals of Biomedical Engineering, Vol. 34, 1786-1798, 2006.
doi:10.1007/s10439-006-9177-6 Google Scholar
7. Scharfetter, H., P. Brunner, and R. Merwa, "Magnetic induction tomography: Single-step solution of the 3-D inverse problem for differential image reconstruction," International Journal of Information and Systems Sciences, Vol. 2, 585-606, 2006. Google Scholar
8. Vauhkonen, M., M. Hamsch, and C. H. Igney, "A measurement system and image reconstruction in magnetic induction tomography," Physiological Measurement, Vol. 29, S445-S454, 2008.
doi:10.1088/0967-3334/29/6/S37 Google Scholar
9. Ma, X., A. J. Peyton, S. R. Higson, A. Lyons, and S. J. Dickinson, "Hardware and software design for an electromagnetic induction tomography (EMT) system for high contrast metal process applications," Measurement Science & Technology, Vol. 17, 111-118, 2006.
doi:10.1088/0957-0233/17/1/018 Google Scholar
10. Wei, H.-Y. and M. Soleimani, "Four dimensional reconstruction using magnetic induction tomography: Experimental study," Progress In Electromagnetics Research, Vol. 129, 17-32, 2012.
doi:10.2528/PIER12032403 Google Scholar
11. Wei, H.-Y. and M. Soleimani, "Volumetric magnetic induction tomography," Measurement Science and Technology, Vol. 23, No. 4, 055401, 2012.
doi:10.1088/0957-0233/23/5/055401 Google Scholar
12. Wei, H.-Y. and M. Soleimani, "Three-dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm," Progress In Electromagnetics Research, Vol. 122, 29-45, 2012.
doi:10.2528/PIER11091513 Google Scholar
13. Watson, S., R. J.Williams, W. Gough, and H. Griffiths, "A magnetic induction tomography system for samples with conductivities below 10 Sm-1," Measurement Science & Technology, Vol. 19, No. 4, 11, 2008.
doi:10.1088/0957-0233/19/4/045501 Google Scholar
14. Soleimani, M. and W. R. B. Lionheart, "Absolute conductivity reconstruction in magnetic induction tomography using a nonlinear method," IEEE Transactions on Medical Imaging, Vol. 25, 1521-1530, 2006.
doi:10.1109/TMI.2006.884196 Google Scholar
15. Soleimani, M., W. R. B. Lionheart, A. J. Peyton, X. D. Ma, and S. R. Higson, "A three-dimensional inverse finite-element method applied to experimental eddy-current imaging data," IEEE Transactions on Magnetics, Vol. 42, 1560-1567, 2006.
doi:10.1109/TMAG.2006.871255 Google Scholar
16. Hansen, P. C. and D. P. O'Leary, "The use of the L-curve in the regularization of discrete ill-posed systems," SIAM J. Sci. Comput, Vol. 14, No. 5, 1487-1503, 1993.
doi:10.1137/0914086 Google Scholar
17. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003 Google Scholar
18. Goharian, M., A. Jegatheesan, and G. R. Moran, "Dogleg trust-region application in electrical impedance tomography," Physiological Measurement, Vol. 28, 555-572, 2007.
doi:10.1088/0967-3334/28/5/009 Google Scholar
19. Tan, C., G. Xu, Y. Li, Y. Xuand, and G. Su, "Boundary image reconstruction based on the nonmonotonic and self-adaptive trust region method for electrical impedance tomography," Physiological Measurement, Vol. 34, 951-962, 2013.
doi:10.1088/0967-3334/34/8/951 Google Scholar
20. Tan, C., Y. Xuand, and F. Dong, "Determining the boundary of inclusions with known conductivities using a Levenberg-Marquardt algorithm by electrical resistance tomography," Measurement Science & Technology, Vol. 22, 104005, 2011.
doi:10.1088/0957-0233/22/10/104005 Google Scholar
21. Kleefeld, A. and M. Reißel, "The Levenberg-Marquardt method applied to a parameter estimation problem arising from electrical resistivity tomography," Applied Mathematics and Computation, Vol. 217, 4490-4501, 2011.
doi:10.1016/j.amc.2010.10.052 Google Scholar
22. Ren, S., F. Dong, Y. Xuand, and C. Tan, "Reconstruction of the three-dimensional inclusion shapes using electrical capacitance tomography," Measurement Science & Technology, Vol. 25, 025403-025419, 2014.
doi:10.1088/0957-0233/25/2/025403 Google Scholar
23. Nielsen, H. B., "Damping parameter in Marquardt's method,", Report IMM-REP-1999-05, Department of Mathematical Modelling, 31 pages, DTU, 1999. Google Scholar
24. Nocedal, J. and S. J. Wright, Numerical Optimization, Springer, 1999.
doi:10.1007/b98874
25. Frandsen, P. E., K. Jonasson, H. B. Nielsen, and O. Tingleff, Unconstrained Optimization, 3rd Ed., IMM, DTU, 2004.
26. Gazzola, S. and J. Nagy, "Generalized Arnoldi-Tikhonov method for sparse reconstruction," SIAM J. Sci. Comput., Vol. 36, No. 2, B225-B247, 2014.
doi:10.1137/130917673 Google Scholar
27. Biro, O. and K. Preis, "On the use of the magnetic vector potential in the Finite Element Analysis of 3 dimensional eddy currents," IEEE Transactions on Magnetics, Vol. 25, 3145-3159, 1989.
doi:10.1109/20.34388 Google Scholar
28. Hollaus, K., C. Magele, R. Merwa, and H. Scharfetter, "Numerical simulation of the eddy current problem in magnetic induction tomography for biomedical applications by edge elements," IEEE Transactions on Magnetics, Vol. 40, 623-626, 2004.
doi:10.1109/TMAG.2004.825424 Google Scholar
29. Morris, A., H. Griffiths, and W. Gough, "A numerical model for magnetic induction tomographic measurements in biological tissues," Physiological Measurement, Vol. 22, 113-119, 2001.
doi:10.1088/0967-3334/22/1/315 Google Scholar
30. Pham, M. H. and A. J. Peyton, "A model for the forward problem in magnetic induction tomography using boundary integral equations," IEEE Transactions on Magnetics, Vol. 44, 2262-2267, 2008.
doi:10.1109/TMAG.2008.2003142 Google Scholar
31. Dekdouk, B., W. Yin, C. Ktistis, D.W. Armitage, and A. J. Peyton, "A method to solve the forward problem in magnetic induction tomography based on the weakly coupled field approximation," IEEE Trans. Biomed. Eng., Vol. 57, No. 4, 914-921, 2009.
doi:10.1109/TBME.2009.2036733 Google Scholar
32. Dyck, D. N., D. A. Lowther, and E. M. Freeman, "A method of computing the sensitivity of electromagnetic quantities to changes in materials and sources," IEEE Transactions on Magnetics, Vol. 30, 3415-3418, 1994.
doi:10.1109/20.312672 Google Scholar
33. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues. 2 Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
34. Madsen, K., H. B. Nielsen, and O. Tingleff, Methods for Non-linear Least Sqaures Problems, 2nd Ed., 2004.
35. Horesh, L., "Some novel approaches in modelling and image reconstruction for multi-frequency electrical impedance tomography of the human brain,", PhD Thesis, 137-173, UCL, 2006. Google Scholar
36. Polydorides, N., W. R. B. Lionheart, and H. McCann, "Krylov subspace iterative techniques: On the detection of brain activity with electrical impedance tomography," IEEE Transactions on Medical Imaging, Vol. 21, 596-603, 2002.
doi:10.1109/TMI.2002.800607 Google Scholar