1. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace and Electronic Systems, Vol. 7, No. 5, 879-894, Sep. 1971.
doi:10.1109/TAES.1971.310328 Google Scholar
2. Akey, N. D., "Overview of RAM reentry measurements program," The Entry Plasma Sheath and Its Effects on Space Vehicle Electromagnetic Systems, 19-31, 1970. Google Scholar
3. Morabito, D. D., "The spacecraft communications blackout problem encountered during passage or entry of planetary atmospheres," IPN Progress Report 42-150, 1-16, Aug. 2002. Google Scholar
4. Shi, L., B. Guo, Y. Liu, and J. Li, "Characteristic of plasma sheath channel and its effect on communication," Progress In Electromagnetic Research, Vol. 123, 321-336, 2012.
doi:10.2528/PIER11110201 Google Scholar
5. Bai, B., X. Li, Y. Liu, J. Xu, L. Shi, and K. Xie, "Effects of reentry plasma sheath on the polarization properties of obliquely incident EM waves," IEEE Transactions on Plasma Science, Vol. 42, No. 10, 3365-3372, Oct. 2014.
doi:10.1109/TPS.2014.2349009 Google Scholar
6. Hartunian, R. A., G. E. Stewart, S. D. Fergason, T. J. Curtiss, and R. W. Seibold, "Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles," Contractor Rep. ATR-2007(5309)-1, Aerospace Corporation, CA, 2007. Google Scholar
7. Belov, I. F., V. Ya. Borovoy, V. A. Gorelov, A. Y. Kireev, A. S. Korolev, and E. A. Stepanov, "Investigation of remote antenna assembly for radio communication with reentry vehicle," Journal of Spacecraft and Rockets, Vol. 38, No. 2, 249-256, Mar. 2001.
doi:10.2514/2.3678 Google Scholar
8. Hinson, W. F., P. B. Gooderum, and D. M. Bushell, "Experimental investigation of multiple-jet liquid injection into hypersonic flow,", TN D-5861, NASA, Jun. 1970. Google Scholar
9. Sternberg, N. and A. I. Smolyakov, "Resonant transmission of electromagnetic waves in multilayer dense-plasma structures," IEEE Transactions on Plasma Science, Vol. 37, No. 7, 1251-1260, Jul. 2009.
doi:10.1109/TPS.2009.2020399 Google Scholar
10. Takahashi, Y., K. Yamada, and T. Abe, "Examination of radio frequency blackout for an inflatable vehicle during atmospheric reentry," Journal of Spacecraft and Rockets, Vol. 51, No. 2, 1954-1964, Mar. 2014.
doi:10.2514/1.A32880 Google Scholar
11. Kim, M., M. Keidar, and I. D. Boyd, "Analysis of an electromagnetic mitigation scheme for reentry telemetry through plasma," Journal of Spacecraft and Rockets, Vol. 45, No. 6, 1223-1229, Nov. 2008.
doi:10.2514/1.37395 Google Scholar
12. Shashurin, A., T. Zhuang, G. Teel, M. Keidar, M. Kundrapu, J. Loverich, I. I. Beilis, and Y. Raitses, "Laboratory modeling of the plasma layer at hypersonic flight," Journal of Spacecraft and Rockets, Vol. 51, No. 3, 838-845, May 2014.
doi:10.2514/1.A32771 Google Scholar
13. Kundrapu, M., J. Loverich, K. Beckwith, P. Stoltz, A. Shashurin, and M. Keidar, "Modeling radio communication blackout and blackout mitigation in hypersonic vehicles," Journal of Spacecraft and Rockets, 1-10, 2015. Google Scholar
14. Gilllman, E. D., J. E. Foster, and I. M. Blankson, "Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation,", NASA,Washington DC, NASA/TM-2010-216220, 2010. Google Scholar
15. Vilnrotter, V. A., S. Hinedi, and R. Kumar, "Frequency estimation techniques for high dynamic trajectories," IEEE Transactions on Aerospace and Electronic Systems, Vol. 25, No. 4, 559-577, Jul. 1989.
doi:10.1109/7.32088 Google Scholar
16. Hurd, W. J., P. Estabrook, C. S. Racho, and E. Satorius, "Critical spacecraft-to-earth communications for Mars exploration rover (MER) entry, descent and landing," Proc. IEEE Aerospace Conference, Vol. 3, 1283-1292, MT, Mar. 2002. Google Scholar
17. Satorius, E., P. Estabrook, J. Wilson, and D. Fort, "Direct-to-Earth communications and signal processing for Mars exploration rover entry, descent and landing," The Interplanetary Network Progress Report, IPN Progress Report 42-153, May 2003. Google Scholar
18. Soriano, M., S. Finley, D. Fort, B. Schratz, P. Ilott, R. Mukai, P. Estabrook, K. Oudrhiri, D. Kahan, and E. Satorius, "Direct-to-Earth communications with Mars science laboratory during entry, descent, and landing," Proc. 2013 IEEE Aerospace Conference, 1-14, 2013. Google Scholar
19. Cattivelli, F. S., P. Estabrook, E. H. Satorius, and A. H. Sayed, "Carrier recovery enhancement for maximum-likelihood doppler shift estimation in Mars exploration missions," IEEE Journal of Selected Topics in Signal Processing, Vol. 2, No. 5, 658-669, Oct. 2008.
doi:10.1109/JSTSP.2008.2005289 Google Scholar
20. Lopes, C. G., E. H. Satorius, P. Estabrook, and A. H. Sayed, "Adaptive carrier tracking for Mars to earth communications during entry, descent, and landing," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 4, 1865-1879, Oct. 2010.
doi:10.1109/TAES.2010.5595600 Google Scholar
21. Chung, S. T. and A. J. Goldsmith, "Degrees of freedom in adaptive modulation: A unified view," IEEE Transactions on Communications, Vol. 49, No. 9, 1561-1571, Sep. 2001.
doi:10.1109/26.950343 Google Scholar
22. Goldsmith, A. J., Wireless Communications, Cambridge University Press, 2005.
doi:10.1017/CBO9780511841224
23. Svensson, A., "An overview of adaptive modulation schemes for known and predicted channels," Proceedings of the IEEE, Vol. 95, No. 12, 2322-2336, Dec. 2007.
doi:10.1109/JPROC.2007.904442 Google Scholar
24. Yang, T. S., A. Duel-Hallen, and H. Hallen, "Reliable adaptive modulation aided by observations of another fading channel," IEEE Transactions on Communications, Vol. 52, No. 4, 605-611, Apr. 2004.
doi:10.1109/TCOMM.2004.826369 Google Scholar
25. Duel-Hallen, A., S. Hu, and H. Hallen, "Long-range prediction of fading signals: Enabling adaptive transmission for mobile radio channels," IEEE Signal Processing Magazine, Vol. 17, No. 3, 62-75, May 2000.
doi:10.1109/79.841729 Google Scholar
26. Duel-Hallen, A., "Fading channel prediction for mobile radio adaptive transmission systems," Proceedings of the IEEE, Vol. 95, No. 12, 2299-2313, Dec. 2007.
doi:10.1109/JPROC.2007.904443 Google Scholar
27. Bachynski, M. P., T. W. Johnston, and I. Shkarofsky, "Electromagnetic properties of high temperature air," Proceedings of the IRE, Vol. 48, No. 3, 347-356, Mar. 1960.
doi:10.1109/JRPROC.1960.287607 Google Scholar
28. He, G., Y. Zhan, N. Ge, Y. Pei, B. Wu, and Y. Zhao, "Channel characterization and finite-state Markov channel modeling for time-varying plasma sheath surrounding hypersonic vehicles," Progress In Electromagnetic Research, Vol. 145, 299-308, 2014.
doi:10.2528/PIER14031104 Google Scholar
29. He, G., Y. Zhan, N. Ge, Y. Pei, and B. Wu, "Measuring the time-varying channel characteristics of the plasma sheath from the reflected signal," IEEE Transactions on Plasma Science, Vol. 42, No. 12, 3975-3981, Dec. 2014.
doi:10.1109/TPS.2014.2363840 Google Scholar
30. Lin, T. C. and L. K. Sproul, "Influence of reentry turbulent plasma fluctuation on EM wave propagation," Computers and Fluids, Vol. 35, 703-711, 2006.
doi:10.1016/j.compfluid.2006.01.009 Google Scholar
31. Demetriades, A. and R. Grabow, "Mean and fluctuating electron density in equilibrium turbulent boundary layers," AIAA, Vol. 9, 1533-1538, Aug. 1971.
doi:10.2514/3.49956 Google Scholar
32. Josyula, E. and W. Bailey, "Governing equations for weakly ionized plasma fields of aerospace vehicles," Journal of Spacecraft and Rockets, Vol. 40, No. 6, 845-857, Nov. 2003.
doi:10.2514/2.7036 Google Scholar
33. Kasdin, N. J., "Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation," Proceedings of the IEEE, Vol. 83, No. 5, 802-827, May 1995.
doi:10.1109/5.381848 Google Scholar
34. Orfanidis, S. J., Electromagnetic Waves and Antennas, Online Book, 1999.