Vol. 153
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-10-14
Theoretical Formulation of a Time-Domain Finite Element Method for Nonlinear Magnetic Problems in Three Dimensions (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 153, 33-55, 2015
Abstract
In this work, a numerical solution of nonlinear ferromagnetic problems is formulated using the three-dimensional time-domain finite element method (TDFEM) combined with the inverse Jiles-Atherton (J-A) vector hysteresis model. After a brief introduction of the J-A constitutive model, the second-order nonlinear partial differential equation (PDE) is constructed through the magnetic vector potential in the time domain, which is then discretized by employing the Newmark-β scheme, and solved by applying the Newton-Raphson method. Different Newton-Raphson schemes are constructed and compared. The capability of the proposed methods is demonstrated by several numerical examples including the simulation of the physical demagnetization process, the prediction of the magnetic remanence in the ferromagnetic material, and the generation of higher-order harmonics.
Citation
Su Yan, and Jian-Ming Jin, "Theoretical Formulation of a Time-Domain Finite Element Method for Nonlinear Magnetic Problems in Three Dimensions (Invited Paper)," Progress In Electromagnetics Research, Vol. 153, 33-55, 2015.
doi:10.2528/PIER15091005
References

1. Mayergoyz, I. D., Mathematical Models of Hysteresis, Springer-Verlag, New York, 1991.
doi:10.2172/6911694

2. Smith, R. C., Smart Material Systems: Model Development, SIAM, Philadelphia, 2005.
doi:10.1137/1.9780898717471

3. Dupré, L. and J. Melkebeek, "Electromagnetic hysteresis modelling: From material science to finite element analysis of devices," International Compumag Society Newsletter, Vol. 10, No. 3, 4-15, 2003.

4. Preisach, F., "Über die magnetische nachwirkung," Zeitschrift für Physik, Vol. 94, 277-302, 1935.
doi:10.1007/BF01349418

5. Jiles, D. C. and D. L. Atherton, "Theory of the magnetisation process in ferromagnetics and its application to the magnetomechanical effect," J. Phys. D: Appl. Phys., Vol. 17, No. 6, 1265-1281, Jun. 1984.
doi:10.1088/0022-3727/17/6/023

6. Jiles, D. C. and D. L. Atherton, "Theory of the magnetisation process in ferromagnetics and its application to the magnetomechanical effect," J. Phys. D: Appl. Phys., Vol. 17, No. 6, 1265-1281, Jun. 1984.
doi:10.1088/0022-3727/17/6/023

7. Mayergoyz, I. D., "Dynamic preisach models of hysteresis," IEEE Trans. Magn., Vol. 24, No. 6, 2925-2927, Nov. 1988.
doi:10.1109/20.92290

8. Bertotti, G., "Dynamic generalization of the scalar Preisach model of hysteresis," IEEE Trans. Magn., Vol. 28, No. 5, 2599-2601, Sep. 1992.
doi:10.1109/20.179569

9. Bergqvist, A. J., "A simple vector generalization of the Jiles-Atherton model of hysteresis," IEEE Trans. Magn., Vol. 32, No. 5, 4213-4215, Sep. 1996.
doi:10.1109/20.539337

10. Leite, J. V., N. Sadowski, P. Kuo-Peng, N. J. Batistela, J. P. A. Bastos, and A. A. de Espíndola, "Inverse Jiles-Atherton vector hysteresis model," IEEE Trans. Magn., Vol. 40, No. 4, 1769-1775, Jul. 2004.
doi:10.1109/TMAG.2004.830998

11. Vecchio, R. D., "An efficient procedure for modelling complex hysteresis processes in ferromagnetic materials," IEEE Trans. Magn., Vol. 16, 809-811, 1980.
doi:10.1109/TMAG.1980.1060680

12. Miano, G., C. Serpico, L. Verolino, and C. Visone, "Comparison of different hysteresis models in FE analysis of magnetic field diffusion," IEEE Trans. Magn., Vol. 31, 1789-1792, 1995.
doi:10.1109/20.376383

13. Dupré, L., O. Bottauscio, M. Chiampi, M. Repetto, and J. Melkebeek, "Modelling of electromagnetic phenomena in soft magnetic materials under unidirectional time periodic flux excitations," IEEE Trans. Magn., Vol. 35, 4147-4184, 1999.

14. Takahashi, N., S. Miyabara, and K. Fujiwara, "Problems in practical finite element analysis using Preisach model," IEEE Trans. Magn., Vol. 35, 1243-1246, 1999.
doi:10.1109/20.767175

15. Park, G., S. Hahn, S. Lee, and H. Jung, "Implementation of hysteresis characteristics using the Preisach model with MB-variables," IEEE Trans. Magn., Vol. 29, 1542-1545, 1993.
doi:10.1109/20.250697

16. Dupré, L., R. V. Keer, and J. Melkebeek, "Complementary 2D finite element procedures for the magnetic field analysis using a vector hysteresis model," Intern. J. for Num. Meth. in Eng., Vol. 42, 1005-1023, 1998.
doi:10.1002/(SICI)1097-0207(19980730)42:6<1005::AID-NME396>3.0.CO;2-N

17. Matsuo, T., Y. Osaka, and M. Shimasaki, "Eddy current analysis using vector hysteresis models with play and stop hysterons," IEEE Trans. Magn., Vol. 36, 1172-1177, 2000.
doi:10.1109/20.877649

18. Jin, J.-M., The Finite Element Method in Electromagnetics, 3rd Ed., Wiley, Hoboken, NJ, 2014.

19. Kuczmann, M., "Using the Newton-Raphson method in the polarization technique to solve nonlinear static magnetic field problems," IEEE Trans. Magn., Vol. 46, No. 3, 875-879, 2010.
doi:10.1109/TMAG.2009.2034260

20. Fujiwara, K., T. Nakata, N. Takahashi, and K. Muramatsu, "Method for determining relaxation factor for modified Newton-Raphson method," IEEE Trans. Magn., Vol. 29, 1962-1965, Mar. 1993.
doi:10.1109/20.250793

21. Li, Y. and J.-M. Jin, "A vector dual-primal finite element tearing and interconnecting method for solving 3-D large-scale electromagnetic problems," IEEE Trans. Antennas Propag., Vol. 54, No. 10, 3000-3009, Oct. 2006.
doi:10.1109/TAP.2006.882191

22. Li, Y.-J. and J.-M. Jin, "Parallel implementation of the FETI-DPEM algorithm for general 3D EM simulations," J. Comput. Phys., Vol. 228, No. 9, 3255-3267, 2009.
doi:10.1016/j.jcp.2009.01.029

23. Li, Y.-J. and J.-M. Jin, "A new dual-primal domain decomposition approach for finite element simulation of 3-D large-scale electromagnetic problems," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2803-2810, Oct. 2007.
doi:10.1109/TAP.2007.905954

24. Yao, W., J.-M. Jin, and P. T. Krein, "An efficient domain decomposition method for 3-D finite element analysis of nonlinear electric machine problems," 2013 IEEE International Electric Machines & Drives Conference (IEMDC), 709-715, May 2013.
doi:10.1109/IEMDC.2013.6556171

25. Yan, S. and J.-M. Jin, "Analysis of nonlinear electromagnetic problems using time-domain finite element method," Proc. IEEE Antennas Propag. Symp., Orlando, FL, Jul. 2013.

26. Ising, E., "Beitrag zur theorie des ferromagnetismus," Zeitschrift für Physik, Vol. 31, No. 1, 253-258, 1925.
doi:10.1007/BF02980577

27. Jiles, D. C., Introduction to Magnetism and Magnetic Materials, Chapman and Hall, New York, 1991.
doi:10.1007/978-1-4615-3868-4

28. Chikazumi, S., Physics of Ferromagnetism, 2nd Ed., Clarendon Press, Oxford, 1997, English edition prepared with the assistance of C. D. Graham, Jr.

29. Jiles, D. C., J. B. Thoelke, and M. K. Devine, "Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis," IEEE Trans. Magn., Vol. 28, No. 1, 27-35, Jan. 1992.
doi:10.1109/20.119813

30. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd Ed., Cambridge University Press, New York, 2007.

31. Ren, Z., "Influence of the R.H.S. on the convergence behaviour of the curl-curl equation," IEEE Trans. Magn., Vol. 32, No. 3, 655-658, May 1996.
doi:10.1109/20.497323

32. Whitney, H., Geometric Integration Theory, Princeton University Press, Princeton, NJ, 1957.

33. Nédélec, J. C., "Mixed finite elements in R3," Numer. Meth., Vol. 35, 315-341, 1980.
doi:10.1007/BF01396415

34. Webb, J. P., "Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements," IEEE Trans. Antennas Propag., Vol. 47, No. 8, 1244-1253, Aug. 1999.
doi:10.1109/8.791939

35. Peterson, A. F., "Absorbing boundary conditions for the vector wave equation," Microw. Opt. Tech. Lett., Vol. 1, No. 2, 62-64, 1988.
doi:10.1002/mop.4650010206

36. Webb, J. P. and V. N. Kanellopoulos, "Absorbing boundary conditions for the finite element solution of the vector wave equation," Microw. Opt. Tech. Lett., Vol. 2, No. 10, 370-372, 1989.
doi:10.1002/mop.4650021010

37. Newmark, N. M., "A method of computation for structural dynamics," J. Engineering Mechanics Division. ASCE, Vol. 85, 67-94, Jul. 1959.

38. Zienkiewicz, O. C., "A new look at the Newmark, Houboult and other time stepping formulas: A weighted residual approach," Earthquake Engineering and Structural Dynamics, Vol. 5, 413-418, 1977.
doi:10.1002/eqe.4290050407

39. Gedney, S. D. and U. Navsariwala, "An unconditionally stable finite element time-domain solution of the vector wave equation," IEEE Microw. Guided Wave Lett., Vol. 5, No. 10, 332-334, Oct. 1995.
doi:10.1109/75.465046

40. Saad, Y. and M. H. Schultz, "GMRes: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 7, No. 3, 856-869, Jul. 1986.
doi:10.1137/0907058

41. Sleijpen, G. L. G. and D. R. Fokkema, "BiCGstab(l) for linear equations involving unsymmetric matrices with complex spectrum," Electronic Trans. Numer. Anal., Vol. 1, 11-32, Sep. 1993.

42. Carpentieri, B., I. S. Duff, and L. Giraud, "Experiments with sparse preconditioning of dense problems from electromagnetic applications," CERFACS, Tech. Rep. TR/PA/00/04, Toulouse, France, 2000.

43. Alléon, G. M. Benzi, and L. Giraud, "Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics," Numer. Algorithms, Vol. 16, 1-15, 1997.
doi:10.1023/A:1019170609950

44. Hantila, F. I., G. Preda, and M. Vasiliu, "Polarization method for static fields," IEEE Trans. Magn., Vol. 36, No. 4, 672-675, Jul. 2000.
doi:10.1109/20.877538

45. International Compumag Society, , Testing electromagnetic analysis methods (T.E.A.M.), http://www.compumag.org/jsite/team.

46. Nakata, T., N. Takahashi, and K. Fujiwara, "Summary of results for benchmark problem 10 (steel plates around a coil)," Compel, Vol. 14, No. 2/3, 103-112, Sep. 1995.
doi:10.1108/eb010141

47. Bottauscio, O., M. Chiampi, C. Ragusa, L. Rege, and M. Repetto, "A test-case for validation of magnetic field analysis with vector hysteresis," IEEE Trans. Magn., Vol. 38, No. 2, 893-896, Mar. 2002.
doi:10.1109/20.996230

48. Yamada, S., K. Bessho, and J. Lu, "Harmonic balance finite element method applied to nonlinear AC magnetic analysis," IEEE Trans. Magn., Vol. 24, No. 4, 2971-2973, Jul. 1989.