Vol. 154
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-01-05
Regulation of Cellular Molecular Signaling by Light (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 154, 209-225, 2015
Abstract
Laser technology has been promoting various microscopy methods and thus making great progresses in life science. Further than contribution to ``seeing is believing'', lasers have also demonstrated their capacity of manipulating cells and even molecular signaling. Specifically, with advances of lasers and combination with other techniques, recent reports show that cell calcium ion, a universal intra- and inter-cellular messenger, can be modulated by lasers at different levels of biological organization from organelle to tissue. It is very encouraging that laser irradiation can activate or control plenty of corresponding cell processes and functions by regulating cell calcium signaling pathways, with promising potential in both scientific research and clinical application. In this paper, optical techniques for regulation of cell calcium signaling are specifically reviewed. Most methods need exogenouschemicals or genetic materials to convert incident photon into stimulation that cells can response with specific molecular dynamics. The only all-optical approach is achieved by nonlinear excitation with femtosecond laser, despite lack of specificity and controllability, providing possibility of a totally noninvasive method without any biochemical materials and thus further potential clinical application in human beings. The developments and techniques of those methods are introduced and explained, with analysis on their properties and current challenges. Potential applications and prospective development are also discussed. Researchers on biophotonics and related biological fields can benefit from this review. It also provides a systematic reference to doctors and researchers who are working on practical application of those methods.
Citation
Pan Cheng, Yujie Zhu, and Hao He, "Regulation of Cellular Molecular Signaling by Light (Invited Paper)," Progress In Electromagnetics Research, Vol. 154, 209-225, 2015.
doi:10.2528/PIER15121008
References

1. Ashkin, A. and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science, Vol. 235, No. 4795, 1517-1520, Mar. 1987.        Google Scholar

2. Tirlapur, U. K. and K. König, "Cell biology: Targeted transfection by femtosecond laser," Nature, Vol. 418, No. 6895, 290-291, Jul. 2002.        Google Scholar

3. Yanik, M. F., H. Cinar, H. N. Cinar, A. D. Chisholm, Y. Jin, and A. Ben-Yakar, "Neurosurgery: Functional regeneration after laser axotomy," Nature, Vol. 432, No. 7019, 822-822, Dec. 2004.        Google Scholar

4. Adams, S. R., J. P. Y. Kao, G. Grynkiewicz, A. Minta, and R. Y. Tsien, "Biologically useful chelators that release Ca2+ upon illumination," J. Am. Chem. Soc., Vol. 110, No. 10, 3212-3220, May 1988.        Google Scholar

5. Boyden, E. S., F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, "Millisecond-timescale, genetically targeted optical control of neural activity," Nat. Neurosci., Vol. 8, No. 9, 1263-1268, Sep. 2005.        Google Scholar

6. Smith, N. I., K. Fujita, T. Kaneko, K. Katoh, O. Nakamura, S. Kawata, and T. Takamatsu, "Generation of calcium waves in living cells by pulsed-laser-induced photodisruption," Applied Physics Letters, Vol. 79, No. 8, 1208-1210, Aug. 2001.        Google Scholar

7. Berridge, M. J., M. D. Bootman, and H. L. Roderick, "Calcium signalling: Dynamics, homeostasis and remodelling," Nat. Rev. Mol. Cell Biol., Vol. 4, No. 7, 517-529, Jul. 2003.        Google Scholar

8. Berridge, M. J., M. D. Bootman, and P. Lipp, "Calcium - A life and death signal," Nature, Vol. 395, No. 6703, 645-648, Oct. 1998.        Google Scholar

9. Dolmetsch, R. E., R. S. Lewis, C. C. Goodnow, and J. I. Healy, "Differential activation of transcription factors induced by Ca2+ response amplitude and duration," Nature, Vol. 386, No. 6627, 855-858, Apr. 1997.        Google Scholar

10. Paemeleire, K., P. E. M. Martin, S. L. Coleman, K. E. Fogarty, W. A. Carrington, L. Leybaert, R. A. Tuft, W. H. Evans, and M. J. Sanderson, "Intercellular calcium waves in Hela cells expressing GFP-labeled connexin 43, 32, or 26," Mol. Biol. Cell, Vol. 11, No. 5, 1815-1827, May 2000.        Google Scholar

11. Fauquier, T., N. C. Guérineau, R. A. McKinney, K. Bauer, and P. Mollard, "Folliculostellate cell network: A route for long-distance communication in the anterior pituitary," Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 15, 8891-8896, Jul. 2001.        Google Scholar

12. Jacob, R., J. E. Merritt, T. J. Hallam, and T. J. Rink, "Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells," Nature, Vol. 335, No. 6185, 40-45, 1988.        Google Scholar

13. Dolmetsch, R. E., K. Xu, and R. S. Lewis, "Calcium oscillations increase the efficiency and specificity of gene expression," Nature, Vol. 392, No. 6679, 933-936, Apr. 1998.        Google Scholar

14. Carafoli, E., "Special issue: Calcium signaling and disease," Biochemical and Biophysical Research Communications, Vol. 322, No. 4, 1097, Oct. 2004.        Google Scholar

15. Sanderson, M. J., A. C. Charles, S. Boitano, and E. R. Dirksen, "Mechanisms and function of intercellular calcium signaling," Molecular and Cellular Endocrinology, Vol. 98, No. 2, 173-187, Jan. 1994.        Google Scholar

16. L. Spyracopoulos, M., X. Li, S. K. Sia, S. M. Gagn, M. Chandra, R. J. Solaro, and B. D. Sykes, "Calcium-induced structural transition in the regulatory domain of human cardiac troponin C," Biochemistry, Vol. 36, No. 40, 12138-12146, Oct. 1997.        Google Scholar

17. Chin, D. and A. R. Means, "Calmodulin: A prototypical calcium sensor," Trends in Cell Biology, Vol. 10, No. 8, 322-328, Aug. 2000.        Google Scholar

18. Brose, N., R. Jahn, et al. "Synaptotagmin: A calcium sensor on the synaptic vesicle surface," Science, Vol. 256, No. 5059, 1021, May 1992.        Google Scholar

19. Szabadkai, G. and M. R. Duchen, "Mitochondria: The hub of cellular Ca2+ signaling," Physiology, Vol. 23, No. 2, 84-94, Apr. 2008.        Google Scholar

20. Csordás, G. and G. Hajnóczky, "Sorting of calcium signals at the junctions of endoplasmic reticulum and mitochondria," Cell Calcium., Vol. 29, No. 4, 249-262, Apr. 2001.        Google Scholar

21. Camello-Almaraz, C., P. J. Gomez-Pinilla, M. J. Pozo, and P. J. Camello, "Mitochondrial reactive oxygen species and Ca2+ signaling," AJP: Cell Physiology, Vol. 291, No. 5, C1082-C1088, Nov. 2006.        Google Scholar

22. Yan, Y., J. Liu, C. Wei, K. Li, W. Xie, Y. Wang, and H. Cheng, "Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes," Cardiovasc. Res., Vol. 77, No. 2, 432-441, Jan. 2008.        Google Scholar

23. Papa, S. and V. P. Skulachev, "Reactive oxygen species, mitochondria, apoptosis and aging," Mol. Cell Biochem., Vol. 174, No. 1-2, 305-319, Sep. 1997.        Google Scholar

24. Miller, D. L. and J. I. Korenbrot, "Kinetics of light-dependent Ca fluxes across the plasma membrane of rod outer segments. A dynamic model of the regulation of the cytoplasmic Ca concentration," J. Gen. Physiol., Vol. 90, No. 3, 397-425, Sep. 1987.        Google Scholar

25. Yau, K.-W. and K. Nakatani, "Light-induced reduction of cytoplasmic free calcium in retinal rod outer segment," Nature, Vol. 313, No. 6003, 579-582, Feb. 1985.        Google Scholar

26. Neuhaus, G., C. Bowler, R. Kern, and N.-H. Chua, "Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways," Cell, Vol. 73, No. 5, 937-952, Jun. 1993.        Google Scholar

27. Sineshchekov, O. A. and E. G. Govorunova, "Rhodopsin-mediated photosensing in green flagellated algae," Trends in Plant Science, Vol. 4, No. 2, 58-63, Feb. 1999.        Google Scholar

28. Saranak, J. and K. W. Foster, "Photoreceptor for curling behavior in peranema trichophorum and evolution of eukaryotic rhodopsins," Eukaryotic Cell, Vol. 4, No. 10, 1605-1612, Oct. 2005.        Google Scholar

29. Specht, K. G. and M. A. J. Rodgers, "Plasma membrane depolarization and calcium influx during cell injury by photodynamic action," Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1070, No. 1, 60-68, Nov. 1991.        Google Scholar

30. Tarr, M. and D. P. Valenzeno, "Modification of cardiac ionic currents by photosensitizer-generated reactive oxygen," Journal of Molecular and Cellular Cardiology, Vol. 23, No. 5, 639-649, May 1991.        Google Scholar

31. Yonuschot, G., "Early increase in intracellular calcium during photodynamic permeabilization," Free Radical Biology and Medicine, Vol. 11, No. 3, 307-317, 1991.        Google Scholar

32. Penning, L. C., M. H. Rasch, E. Ben-Hur, T. M. A. R. Dubbelman, A. C. Havelaar, J. Van der Zee, and J. Van Steveninck, "A role for the transient increase of cytoplasmic free calcium in cell rescue after photodynamic treatment," Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1107, No. 2, 255-260, Jun. 1992.        Google Scholar

33. Ben-Hurt, E. and T. M. A. R. Dubbelman, "Cytoplasmic free calcium changes as a trigger mechanism in the response of cells to photosensitization," Photochemistry and Photobiology, Vol. 58, No. 6, 890-894, Dec. 1993.        Google Scholar

34. Gederaas, O. A., K. Thorstensen, and I. Romslo, "The effect of brief illumination on intracellular free calcium concentration in cells with 5-aminolevulinic acid-induced protoporphyrin IX synthesis," Scandinavian Journal of Clinical and Laboratory Investigation, Vol. 56, No. 7, 583-589, Jan. 1996.        Google Scholar

35. Rück, A., K. Heckelsmiller, R. Kaufmann, N. Grossman, E. Haseroth, and N. Akgün, "Light-induced apoptosis involves a defined sequence of cytoplasmic and nuclear calcium release in AlPcS4-photosensitized rat bladder RR 1022 epithelial cells," Photochemistry and Photobiology, Vol. 72, No. 2, 210-216, Aug. 2000.        Google Scholar

36. Granville, D. J., D. O. Ruehlmann, J. C. Choy, B. A. Cassidy, D. W. C. Hunt, C. van Breemen, and B. M. McManus, "Bcl-2 increases emptying of endoplasmic reticulum Ca2+ stores during photodynamic therapy-induced apoptosis," Cell Calcium, Vol. 30, No. 5, 343-350, Nov. 2001.        Google Scholar

37. Tarr, M., A. Frolov, and D. P. Valenzeno, "Photosensitization-induced calcium overload in cardiac cells: Direct link to membrane permeabilization and calcium influx," Photochemistry and Photobiology, Vol. 73, No. 4, 418-424, Apr. 2001.        Google Scholar

38. Zhou, Z., H. Yang, and Z. Zhang, "Role of calcium in phototoxicity of 2-butylamino-2-demethoxy-hypocrellin a to human gastric cancer MGC-803 cells," Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Vol. 1593, No. 2-3, 191-200, Feb. 2003.        Google Scholar

39. Ding, X., Q. Xu, F. Liu, P. Zhou, Y. Gu, J. Zeng, J. An, W. Dai, and X. Li, "Hematoporphyrin monomethyl ether photodynamic damage on HeLa cells by means of reactive oxygen species production and cytosolic free calcium concentration elevation," Cancer Letters, Vol. 216, No. 1, 43-54, Dec. 2004.        Google Scholar

40. Ito, A., S. Hosokawa, S. Hakomori, S. Miyoshi, K. Soejima, and T. Arai, "The mechanism of PDT-induced electrical blockade: the measurement of intracellular Ca2+ concentration changes in cardiac myocytes," Biomedical Optics (BiOS) 2008. International Society for Optics and Photonics, Vol. 6854, 68540M-68540M-5, 2008.        Google Scholar

41. Qiao, X., C. Huang, Y. Ying, X. Yang, Y. Liu, and Q. Tian, "Involvement of reactive oxygen species and calcium in photo-induced membrane damage in HeLa cells by a bis-methanophosphonate fullerene," Journal of Photochemistry and Photobiology B: Biology, Vol. 98, No. 3, 193-198, Mar. 2010.        Google Scholar

42. Robertson, C. A., D. H. Evans, and H. Abrahamse, "Photodynamic therapy (PDT): A short review on cellular mechanisms and cancer research applications for PDT," Journal of Photochemistry and Photobiology B: Biology, Vol. 96, No. 1, 1-8, Jul. 2009.        Google Scholar

43. Cui, Z. J., Y. Habara, D. Y. Wang, and T. Kanno, "A novel aspect of photodynamic action: Induction of recurrent spikes in cytosolic calcium concentration," Photochemistry and Photobiology, Vol. 65, No. 2, 382-386, Feb. 1997.        Google Scholar

44. Lipp, P. and E. Niggli, "Submicroscopic calcium signals as fundamental events of excitation–contraction coupling in guinea-pig cardiac myocytes," The Journal of Physiology, Vol. 492, No. 1, 31-38, Apr. 1996.        Google Scholar

45. Kasai, H., "Comparative biology of Ca2+-dependent exocytosis: Implications of kinetic diversity for secretory function," Trends in Neurosciences, Vol. 22, No. 2, 88-93, Feb. 1999.        Google Scholar

46. Bollmann, J. H., B. Sakmann, and J. G. Borst, "Calcium sensitivity of glutamate release in a calyx-type terminal," Science, Vol. 289, No. 5481, 953-957, Aug. 2000.        Google Scholar

47. Lohmann, C., A. Finski, and T. Bonhoeffer, "Local calcium transients regulate the spontaneous motility of dendritic filopodia," Nat. Neurosci., Vol. 8, No. 3, 305-312, Mar. 2005.        Google Scholar

48. Adams, S. R. and R. Y. Tsien, "Controlling cell chemistry with caged compounds," Annual Review of Physiology, Vol. 55, No. 1, 755-784, 1993.        Google Scholar

49. Ellis-Davies, G. C. R., "Caged compounds: Photorelease technology for control of cellular chemistry and physiology," Nat. Meth., Vol. 4, No. 8, 619-628, Aug. 2007.        Google Scholar

50. Lipp, P. and E. Niggli, "Fundamental calcium release events revealed by two-photon excitation photolysis of caged calcium in guinea-pig cardiac myocytes," The Journal of Physiology, Vol. 508, No. 3, 801-809, May 1998.        Google Scholar

51. Echevarría, W., M. F. Leite, M. T. Guerra, W. R. Zipfel, and M. H. Nathanson, "Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum," Nat. Cell Biol., Vol. 5, No. 5, 440-446, May 2003.        Google Scholar

52. Chen, Y., J. Mancuso, Z. Zhao, X. Li, J. Cheng, G. Roman, and S. T. C. Wong, "Vasodilation by in vivo activation of astrocyte endfeet via two-photon calcium uncaging as a strategy to prevent brain ischemia," J. Biomed. Opt., Vol. 18, No. 12, 126012-126012, 2013.        Google Scholar

53. Callaway, E. M. and R. Yuste, "Stimulating neurons with light," Current Opinion in Neurobiology, Vol. 12, No. 5, 587-592, Oct. 2002.        Google Scholar

54. Nagel, G., T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig, P. Hegemann, and E. Bamberg, "Channelrhodopsin-2, a directly light-gated cation-selective membrane channel," PNAS, Vol. 100, No. 24, 13940-13945, Nov. 2003.        Google Scholar

55. Boyden, E. S., F. Zhang, E. Bamberg, G. Nagel, and K. Deisseroth, "Millisecond-timescale, genetically targeted optical control of neural activity," Nat. Neurosci., Vol. 8, No. 9, 1263-1268, Sep. 2005.        Google Scholar

56. Nagel, G., M. Brauner, J. F. Liewald, N. Adeishvili, E. Bamberg, and A. Gottschalk, "Light activation of channelrhodopsin-2 in excitable cells of caenorhabditis elegans triggers rapid behavioral responses," Current Biology, Vol. 15, No. 24, 2279-2284, Dec. 2005.        Google Scholar

57. Zhang, Y.-P. and T. G. Oertner, "Optical induction of synaptic plasticity using a light-sensitive channel," Nat. Meth., Vol. 4, No. 2, 139-141, Feb. 2007.        Google Scholar

58. Guo, Z. V., A. C. Hart, and S. Ramanathan, "Optical interrogation of neural circuits in Caenorhabditis elegans," Nat. Meth., Vol. 6, No. 12, 891-896, Dec. 2009.        Google Scholar

59. Rickgauer, J. P., K. Deisseroth, and D. W. Tank, "Simultaneous cellular-resolution optical perturbation and imaging of place cell firing fields," Nat. Neurosci., Vol. 17, No. 12, 1816-1824, Dec. 2014.        Google Scholar

60. Packer, A. M., L. E. Russell, H. W. P. Dalgleish, and M. Häusser, "Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo," Nat. Meth., Vol. 12, No. 2, 140-146, Dec. 2014.        Google Scholar

61. Zhang, F., A. M. Aravanis, A. Adamantidis, L. de Lecea, and K. Deisseroth, "Circuit-breakers: Optical technologies for probing neural signals and systems," Nat. Rev. Neurosci., Vol. 8, No. 8, 577-581, Aug. 2007.        Google Scholar

62. Gradinaru, V., F. Zhang, C. Ramakrishnan, J. Mattis, R. Prakash, I. Diester, I. Goshen, K. R. Thompson, and K. Deisseroth, "Molecular and cellular approaches for diversifying and extending optogenetics," Cell, Vol. 141, No. 1, 154-165, Apr. 2010.        Google Scholar

63. Zhang, F., V. Gradinaru, A. R. Adamantidis, R. Durand, R. D. Airan, L. de Lecea, and K. Deisseroth, "Optogenetic interrogation of neural circuits: Technology for probing mammalian brain structures," Nat. Protocols, Vol. 5, No. 3, 439-456, Mar. 2010.        Google Scholar

64. Zhang, F., L.-P. Wang, M. Brauner, J. F. Liewald, K. Kay, N. Watzke, P. G. Wood, E. Bamberg, G. Nagel, A. Gottschalk, and K. Deisseroth, "Multimodal fast optical interrogation of neural circuitry," Nature, Vol. 446, No. 7136, 633-639, Apr. 2007.        Google Scholar

65. Akerboom, J., N. Carreras Calderón, L. Tian, S. Wabnig, M. Prigge, J. Tolö, A. Gordus, M. B. Orger, K. E. Severi, J. J. Macklin, R. Patel, S. R. Pulver, T. J. Wardill, E. Fischer, C. Schüler, T.-W. Chen, K. S. Sarkisyan, J. S. Marvin, C. I. Bargmann, D. S. Kim, S. Kügler, L. Lagnado, P. Hegemann, A. Gottschalk, E. R. Schreiter, and L. L. Looger, "Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics," Front Mol. Neurosci., Vol. 6, Mar. 2013.        Google Scholar

66. Anikeeva, P., A. S. Andalman, I. Witten, M. Warden, I. Goshen, L. Grosenick, L. A. Gunaydin, L. M. Frank, and K. Deisseroth, "Optetrode: A multichannel readout for optogenetic control in freely moving mice," Nat. Neurosci., Vol. 15, No. 1, 163-170, Jan. 2012.        Google Scholar

67. Peron, S. and K. Svoboda, "From cudgel to scalpel: Toward precise neural control with optogenetics," Nat. Meth., Vol. 8, No. 1, 30-34, Jan. 2011.        Google Scholar

68. Prakash, R., O. Yizhar, B. Grewe, C. Ramakrishnan, N. Wang, I. Goshen, A. M. Packer, D. S. Peterka, R. Yuste, M. J. Schnitzer, and K. Deisseroth, "Two-photon optogenetic toolbox for fast inhibition, excitation and bistable modulation," Nat. Meth., Vol. 9, No. 12, 1171-1179, Dec. 2012.        Google Scholar

69. Yizhar, O., L. E. Fenno, T. J. Davidson, M. Mogri, and K. Deisseroth, "Optogenetics in Neural Systems," Neuron, Vol. 71, No. 1, 9-34, Jul. 2011.        Google Scholar

70. Rhee, A. Y., G. Li, J. Wells, and J. P. Y. Kao, "Photostimulation of sensory neurons of the rat vagus nerve," SPIE BiOS: Biomedical Optics. International Society for Optics and Photonics, Vol. 6854, 68540E-68540E-5, 2008.        Google Scholar

71. Suh, E., A. Izzo Matic, M. Otting, J. Joseph T. Walsh, and C.-P. Richter, "Optical stimulation in mice lacking the TRPV1 channel," SPIE BiOS: Biomedical Optics. International Society for Optics and Photonics, Vol. 7180, 71800S-71800S-5, 2009.        Google Scholar

72. Yao, J., B. Liu, and F. Qin, "Rapid temperature jump by infrared diode laser irradiation for patch-clamp studies," Biophys. J., Vol. 96, No. 9, 3611-3619, May 2009.        Google Scholar

73. Albert, E. S., J. M. Bec, G. Desmadryl, K. Chekroud, C. Travo, S. Gaboyard, F. Bardin, I. Marc, M. Dumas, G. Lenaers, C. Hamel, A. Muller, and C. Chabbert, "TRPV4 channels mediate the infrared laser-evoked response in sensory neurons," J. Neurophysiol., Vol. 107, No. 12, 3227-3234, Jun. 2012.        Google Scholar

74. Richter, C.-P. and X. Tan, "Photons and neurons," Hearing Research, Vol. 311, 72-88, May 2014.        Google Scholar

75. Kamei, Y., M. Suzuki, K. Watanabe, K. Fujimori, T. Kawasaki, T. Deguchi, Y. Yoneda, T. Todo, S. Takagi, T. Funatsu, and S. Yuba, "Infrared laser-mediated gene induction in targeted single cells in vivo," Nat. Meth., Vol. 6, No. 1, 79-81, Jan. 2009.        Google Scholar

76. Young, S. R., M. Dyson, and P. Bolton, "Effect of light on calcium uptake by macrophages," Laser Therapy, Vol. 2, No. 2, 53-57, 1990.        Google Scholar

77. Lubart, H. F. R., "Effect of light on calcium transport in bull sperm cells," Journal of Photochemistry and Photobiology. B, Biology, Vol. 15, No. 4, 337-41, 1992.        Google Scholar

78. Breitbart, H., T. Levinshal, N. Cohen, H. Friedmann, and R. Lubart, "Changes in calcium transport in mammalian sperm mitochondria and plasma membrane irradiated at 633 nm (HeNe laser)," Journal of Photochemistry and Photobiology B: Biology, Vol. 34, No. 2-3, 117-121, Jul. 1996.        Google Scholar

79. Rachel Lubart, H. F., "Changes in calcium transport in mammalian sperm mitochondria and plasma membranes caused by 780 nm irradiation," Lasers in Surgery and Medicine, Vol. 21, No. 5, 493-9, 1997.        Google Scholar

80. Karu, T., "Derepression of the Genome after irradiation of human lymphocytes with He-Ne laser," Laser Therapy, Vol. 4, No. 1, 5-24, 1992.        Google Scholar

81. Schwartz, F., M. Adamek, C. Brodie, and A. Shainberg, "Effect of low-energy laser irradiation on cytokine secretion from skeletal muscle cells: Involvement of calcium in the process," BiOS Europe'97. International Society for Optics and Photonics, Vol. 3198, 48-54, 1997.        Google Scholar

82. Schwartz, F., C. Brodie, E. Appel, G. Kazimirsky, and A. Shainberg, "Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures," Journal of Photochemistry and Photobiology B: Biology, Vol. 66, No. 3, 195-200, Apr. 2002.        Google Scholar

83. Alexandratou, E., D. Yova, P. Handris, D. Kletsas, and S. Loukas, "Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy," Photochemical & Photobiological Sciences, Vol. 1, No. 8, 547-552, Jul. 2002.        Google Scholar

84. Yang, W.-Z., J.-Y. Chen, J.-T. Yu, and L.-W. Zhou, "Effects of low power laser irradiation on intracellular calcium and histamine release in RBL-2H3 mast cells," Photochemistry and Photobiology, Vol. 83, No. 4, 979-984, Jul. 2007.        Google Scholar

85. Lubart, R., R. Lavi, H. Friedmann, and S. Rochkind, "Photochemistry and photobiology of light absorption by living cells," Photomedicine and Laser Surgery, Vol. 24, No. 2, 179-185, Apr. 2006.        Google Scholar

86. Cohen, N., R. Lubart, S. Rubinstein, and H. Breitbart, "Light irradiation of mouse spermatozoa: Stimulation of in vitro fertilization and calcium signals," Photochemistry and Photobiology, Vol. 68, No. 3, 407-413, Sep. 1998.        Google Scholar

87. Lavi, R., A. Shainberg, H. Friedmann, V. Shneyvays, O. Rickover, M. Eichler, D. Kaplan, and R. Lubart, "Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells," J. Biol. Chem., Vol. 278, No. 42, 40917-40922, Oct. 2003.        Google Scholar

88. Dittami, G. M., S. M. Rajguru, R. A. Lasher, R. W. Hitchcock, and R. D. Rabbitt, "Intracellular calcium transients evoked by pulsed infrared radiation in neonatal cardiomyocytes," J. Neurophysiol., Vol. 589, No. 6, 1295-1306, Mar. 2011.        Google Scholar

89. Lumbreras, V., E. Bas, C. Gupta, and S. M. Rajguru, "Pulsed infrared radiation excites cultured neonatal spiral and vestibular ganglion neurons by modulating mitochondrial calcium cycling," J. Neurophysiol., Vol. 112, No. 6, 1246-1255, Sep. 2014.        Google Scholar

90. Iwanaga, S., N. Smith, K. Fujita, S. Kawata, and O. Nakamura, "Single-pulse cell stimulation with a near-infrared picosecond laser," Applied Physics Letters, Vol. 87, 243901, Dec. 2005.        Google Scholar

91. Iwanaga, S., T. Kaneko, K. Fujita, N. Smith, O. Nakamura, T. Takamatsu, and S. Kawata, "Location-dependent photogeneration of calcium waves in HeLa cells," Cell Biochem Biophys, Vol. 45, No. 2, 167-176, Jun. 2006.        Google Scholar

92. Baumgart, J., W. Bintig, A. Ngezahayo, H. Lubatschowski, and A. Heisterkamp, "Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection," Optics Express, Vol. 18, No. 3, 2219, Feb. 2010.        Google Scholar

93. Iwanaga, S., N. I. Smith, K. Fujita, and S. Kawata, "Slow Ca2+ wave stimulation using low repetition rate femtosecond pulsed irradiation," Optics Express, Vol. 14, No. 2, 717, 2006.        Google Scholar

94. Zhou, M., E. L. Zhao, H. F. Yang, A. H. Gong, J. K. Di, and Z. J. Zhang, "Generation of calcium waves in living cells induced by 1 kHz femtosecond laser protuberance microsurgery," Laser Phys., Vol. 19, No. 7, 1470-1474, Jul. 2009.        Google Scholar

95. Vogel, A., "Nonlinear absorption: intraocular microsurgery and laser lithotripsy," Phys. Med. Biol., Vol. 42, No. 5, 895, 1997.        Google Scholar

96. Vogel, A., J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance of optical breakdown in water at nanosecond to femtosecond time scales," Applied Physics B: Lasers and Optics, Vol. 68, No. 2, 271-280, 1999.        Google Scholar

97. Iwanaga, S., N. I. Smith, K. Fujita, T. Kaneko, M. Oyamada, T. Takamatsu, S. Kawata, and O. Nakamura, "Stimulation of living cells by femtosecond near-infrared laser pulses," High-Power Lasers and Applications, 122-128, 2003.        Google Scholar

98. Zhao, Y., Y. Zhang, X. Liu, X. Lv, W. Zhou, Q. Luo, and S. Zeng, "Photostimulation of astrocytes with femtosecond laser pulses," Optics Express, Vol. 17, No. 3, 1291, Feb. 2009.        Google Scholar

99. Rizzuto, R. and T. Pozzan, "Microdomains of intracellular Ca2+: Molecular determinants and functional consequences," Physiological Reviews, Vol. 86, No. 1, 369-408, Jan. 2006.        Google Scholar

100. He, H., S. Li, S. Wang, M. Hu, Y. Cao, and C. Wang, "Manipulation of cellular light from green fluorescent protein by a femtosecond laser," Nat. Photon., Vol. 6, No. 10, 651-656, Oct. 2012.        Google Scholar

101. He, H., S. K. Kong, and K. T. Chan, "Identification of source of calcium in HeLa cells by femtosecond laser excitation," J. Biomed. Opt., Vol. 15, No. 5, 057010-057010-5, 2010.        Google Scholar

102. He, H., K. T. Chan, and S. K. Kong, "Role of nuclear tubule on the apoptosis of HeLa cells induced by femtosecond laser," Applied Physics Letters, Vol. 96, No. 22, 223701, May 2010.        Google Scholar

103. Watanabe, W., N. Arakawa, S. Matsunaga, T. Higashi, K. Fukui, K. Isobe, and K. Itoh, "Femtosecond laser disruption of subcellular organelles in a living cell," Optics Express, Vol. 12, No. 18, 4203, 2004.        Google Scholar

104. He, H., K. T. Chan, S. K. Kong, and R. K. Y. Lee, "Mechanism of oxidative stress generation in cells by localized near-infrared femtosecond laser excitation," Applied Physics Letters, Vol. 95, No. 23, 233702, Dec. 2009.        Google Scholar

105. He, H., S. Wang, X. Li, S. Li, M. Hu, Y. Cao, and C.-Y. Wang, "Ca2+ waves across gaps in non-excitable cells induced by femtosecond laser exposure," Applied Physics Letters, Vol. 100, No. 17, 173704, Apr. 2012.        Google Scholar

106. He, H., K. Nakagawa, Y. Wang, Y. Hosokawa, and K. Goda, "Mechanism for microtsunami-induced intercellular mechanosignalling," Nat. Photon., Vol. 9, No. 10, 623-623, Oct. 2015.        Google Scholar

107. Zhao, Y., Y. Zhang, W. Zhou, X. Liu, S. Zeng, and Q. Luo, "Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser," J. Biomed. Opt., Vol. 15, No. 3, 035001-035001-5, 2010.        Google Scholar

108. Compton, J. L., J. C. Luo, H. Ma, E. Botvinick, and V. Venugopalan, "High-throughput optical screening of cellular mechanotransduction," Nat. Photon., Vol. 8, No. 9, 710-715, Sep. 2014.        Google Scholar

109. Bianchi, K., A. Rimessi, A. Prandini, G. Szabadkai, and R. Rizzuto, "Calcium and mitochondria: mechanisms and functions of a troubled relationship," Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Vol. 1742, No. 1-3, 119-131, Dec. 2004.        Google Scholar

110. Tirlapur, U. K., K. König, C. Peuckert, R. Krieg, and K.-J. Halbhuber, "Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death," Experimental Cell Research, Vol. 263, No. 1, 88-97, Feb. 2001.        Google Scholar

111. Yan, W., H. He, Y. Wang, Y. Wang, M. Hu, and C. Wang, "Controllable generation of reactive oxygen species by femtosecond-laser irradiation," Applied Physics Letters, Vol. 104, No. 8, 083703, Feb. 2014.        Google Scholar

112. Yoon, J., S. Ryu, S. Lee, and C. Choi, "Cytosolic irradiation of femtosecond laser induces mitochondria-dependent apoptosis-like cell death via intrinsic reactive oxygen cascades," Scientific Reports, Vol. 5, 8231, Feb. 2015.        Google Scholar

113. Ando, J., N. I. Smith, K. Fujita, and S. Kawata, "Photogeneration of membrane potential hyperpolarization and depolarization in non-excitable cells," Eur. Biophys. J., Vol. 38, No. 2, 255-262, Jan. 2009.        Google Scholar

114. Wang, Y., H. He, S. Li, D. Liu, B. Lan, M. Hu, Y. Cao, and C. Wang, "All-optical regulation of gene expression in targeted cells," Sci. Rep., Vol. 4, Jun. 2014.        Google Scholar

115. Smith, N. I., Y. Kumamoto, S. Iwanaga, J. Ando, K. Fujita, and S. Kawata, "A femtosecond laser pacemaker for heart muscle cells," Optics Express, Vol. 16, No. 12, 8604, Jun. 2008.        Google Scholar

116. Hirase, H., V. Nikolenko, J. H. Goldberg, and R. Yuste, "Multiphoton stimulation of neurons," J. Neurophysiol., Vol. 51, No. 3, 237-247, Jun. 2002.        Google Scholar

117. Smith, N. I., S. Iwanaga, T. Beppu, K. Fujita, O. Nakamura, and S. Kawata, "Femtosecond laser-induced calcium release in neural-type cells," Biomedical Optics 2005. International Society for Optics and Photonics, Vol. 5705, 1-6, 2005.        Google Scholar

118. Day, D., C. G. Cranfield, and M. Gu, "High-speed fluorescence imaging and intensity profiling of femtosecond-induced calcium transients," International Journal of Biomedical Imaging, Vol. 2006, e93438, Mar. 2006.        Google Scholar

119. Smith, N. I., S. Iwanaga, T. Beppu, K. Fujita, O. Nakamura, and S. Kawata, "Photostimulation of two types of Ca2+ waves in rat pheochromocytoma PC12 cells by ultrashort pulsed near-infrared laser irradiation," Laser Phys. Lett., Vol. 3, No. 3, 154, Mar. 2006.        Google Scholar

120. Zhou, W., X. Liu, X. L¨u, J. Li, Q. Luo, and S. Zeng, "Monitor and control of neuronal activities with femtosecond pulse laser," Chin. Sci. Bull., Vol. 53, No. 5, 687-694, Mar. 2008.        Google Scholar

121. Liu, X., X. Lv, S. Zeng, W. Zhou, and Q. Luo, "Noncontact and nondestructive identification of neural circuits with a femtosecond laser," Applied Physics Letters, Vol. 94, No. 6, 061113, Feb. 2009.        Google Scholar

122. Parys, B., A. Côté V. Gallo, P. De Koninck, and A. Sík, "Intercellular calcium signaling between astrocytes and oligodendrocytes via gap junctions in culture," Neuroscience, Vol. 167, No. 4, 1032-1043, Jun. 2010.        Google Scholar

123. Zhao, Y., X. Liu, Y. Zhang, W. Zhou, and S. Zeng, "Modulation of synchronous calcium oscillations in hippocampal neurons by photostimulation of astrocytes with femtosecond laser," Chin. Sci. Bull., Vol. 55, No. 30, 3436-3440, Nov. 2010.        Google Scholar