Vol. 157
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2016-10-27
Scattering and Transmission of Waves in Multiple Random Rough Surfaces: Energy Conservation Studies with the Second Order Small Perturbation Method
By
Progress In Electromagnetics Research, Vol. 157, 1-20, 2016
Abstract
Energy conservation is an important consideration in wave scattering and transmission from random rough surfaces and is particularly important in passive microwave remote sensing. In this paper, we study energy conservation in scattering from layered random rough surfaces using the second order small perturbation method (SPM2). SPM2 includes both first order incoherent scattering and a second order correction to the coherent fields. They are combined to compute the total reflected and transmitted powers, as a sum of integrations over wavenumber kx, in which each integration includes the surface power spectra of a rough interface weighted by an emission kernel function (assuming the roughness of each interface is uncorrelated). We calculate the corresponding kernel functions which are the power spectral densities for one-dimensional (1D) surfaces in 2D scattering problems and examine numerical results for the cases of 2 rough interfaces and 51 rough interfaces. Because it is known that the SPM when evaluated to second order conserves energy, and it can be applied to second order for arbitrary surface power spectra, energy conservation can be shown to be satisfied for each value of kx in the kernel functions. The numerical examples show that energy conservation is obeyed for any dielectric contrast, any layer configuration and interface, and for arbitrary roughness spectra. The values of reflected or transmitted powers predicted, however, are accurate only to second order in surface roughness.
Citation
Tianlin Wang, Leung Tsang, Joel Tidmore Johnson, and Shurun Tan, "Scattering and Transmission of Waves in Multiple Random Rough Surfaces: Energy Conservation Studies with the Second Order Small Perturbation Method," Progress In Electromagnetics Research, Vol. 157, 1-20, 2016.
doi:10.2528/PIER16080802
References

1. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves, Vol. 1: Theory and Applications, 426, Wiley Interscience, 2000.
doi:10.1002/0471224286

2. Tsang, L. and J. A. Kong, Scattering of Electromagnetic Waves, Vol. 3: Advanced Topics, 413, Wiley Interscience, 2001.
doi:10.1002/0471224278

3. Tsang, L., X. Gu, and H. Braunisch, "Effects of random rough surface on absorption by conductors at microwave frequencies," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 4, 221-223, 2006.
doi:10.1109/LMWC.2006.872109        Google Scholar

4. Bagley, J. Q., L. Tsang, K. H. Ding, and A. Ishimaru, "Optical transmission through a plasmon film lens with small roughness: Enhanced spatial resolution of images of single source and multiple sources," Journal of the Optical Society of America B, Vol. 28, No. 7, 1766-1777, 2011.
doi:10.1364/JOSAB.28.001766        Google Scholar

5. Tsang, L., K. H. Ding, X. Li, P. N. Duvelle, J. H. Vella, J. Goldsmith, C. L. H. Devlin, and N. I. Limberopoulos, "Studies of the influence of deep subwavelength surface roughness on fields of plasmonic thin film based on Lippmann-Schwinger equation in the spectral domain," Journal of the Optical Society of America B, Vol. 32, No. 5, 878-891, 2015.
doi:10.1364/JOSAB.32.000878        Google Scholar

6. Tabatabaeenejad, A. and M. Moghaddam, "Bistatic scattering from three-dimensional layered rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 8, 2102-2114, 2006.
doi:10.1109/TGRS.2006.872140        Google Scholar

7. Afifi, S. and R. Dusseaux, "On the co-polarized scattered intensity ratio of rough layered surfaces: The probability law derived from the small perturbation method," IEEE Transactions on Antennas Propagation, Vol. 60, No. 4, 2133-2138, 2012.
doi:10.1109/TAP.2012.2186258        Google Scholar

8. Johnson, J. T., "Third-order small-perturbation method for scattering from dielectric rough surfaces," Journal of the Optical Society of America A, Vol. 16, No. 11, 2720-2736, 1999.
doi:10.1364/JOSAA.16.002720        Google Scholar

9. Chiu, T. C. and K. Sarabandi, "Electromagnetic scattering interaction between a dielectric cylinder and a slightly rough surface," IEEE Transaction on Antennas and Propagation, Vol. 47, No. 5, 902-913, 1999.
doi:10.1109/8.774155        Google Scholar

10. Soubret, A., G. Berginc, and C. Bourrely, "“Backscattering enhancement of an electromagnetic wave scattered by two-dimensional rough layers," Journal of the Optical Society of America A, Vol. 18, No. 11, 2778-2788, 2001.
doi:10.1364/JOSAA.18.002778        Google Scholar

11. Demir, M. A. and J. T. Johnson, "Fourth and higher-order small perturbation solution for scattering from dielectric rough surfaces," Journal of the Optical Society of America A, Vol. 20, No. 12, 2330-2337, 2003.
doi:10.1364/JOSAA.20.002330        Google Scholar

12. Soubert, A., G. Berginc, and C. Bourrely, "Application of reduced Rayleigh equations to electromagnetic wave scattering by two-dimensional randomly rough surfaces," Physical Review B, Vol. 63, No. 24, 245411, 2011.
doi:10.1103/PhysRevB.63.245411        Google Scholar

13. Zamani, H., A. Tavakoli, and M. Dehmollaian, "Second-order perturbative solution of scattering from two rough surfaces with arbitrary dielectric profiles," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5767-5776, 2015.
doi:10.1109/TAP.2015.2484387        Google Scholar

14. Zamani, H., A. Tavakoli, and M. Dehmollaian, "Second-order perturbative solution of crosspolarized scattering from multilayered rough surfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1877-1890, 2016.
doi:10.1109/TAP.2016.2535503        Google Scholar

15. Demir, M. A., Perturbation theory of electromagnetic scattering from layered media with rough interfaces, Ph.D. Dissertation, Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, 2007.

16. Imperatore, P., A. Iodice, and D. Riccio, "Electromagnetic wave scattering from layered structures with an arbitrary number of rough interfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 4, 1056-1072, 2009.
doi:10.1109/TGRS.2008.2007804        Google Scholar

17. Wu, C. and X. Zhang, "Second-order perturbative solutions for 3-D electromagnetic radiation and propagation in a layered structure with multilayer rough interfaces," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 1, 180-194, 2015.
doi:10.1109/JSTARS.2014.2320506        Google Scholar

18. Zamani, H., A. Tavakoli, and M. Dehmollaian, "Scattering from layered rough surfaces: Analytical and numerical investigations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 6, 3685-3696, 2016.
doi:10.1109/TGRS.2016.2524639        Google Scholar

19. Demir, M. A., J. T. Johnson, and T. J. Zajdel, "A study of the fourth-order small perturbation method for scattering from two-layer rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 9, 3374-3382, 2012.
doi:10.1109/TGRS.2011.2182614        Google Scholar

20. Pinel, N., J. T. Johnson, and C. Bourlier, "A geometrical optics model of three dimensional scattering from a rough layer with two rough surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 3, 809-816, 2010.
doi:10.1109/TAP.2009.2039306        Google Scholar

21. Tabatabaeenejad, A., X. Duan, and M. Moghaddam, "Coherent scattering of electromagnetic waves from two-layer rough surfaces within the Kirchhoff regime," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 7, 3943-3953, 2013.
doi:10.1109/TGRS.2012.2229391        Google Scholar

22. Huang, S. and L. Tsang, "Electromagnetic scattering of randomly rough soil surfaces based on numerical solutions of Maxwell equations in three-dimensional simulations using a hybrid UV/PBTG/SMCG method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 10, 4025-4035, 2012.
doi:10.1109/TGRS.2012.2189776        Google Scholar

23. Chen, K. S., T. D. Wu, L. Tsang, Q. Li, J. Shi, and A. K. Fung, "Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 1, 90-101, 2003.
doi:10.1109/TGRS.2002.807587        Google Scholar

24. Du, Y., J. A. Kong, Z. Y. Wang, W. Z. Yan, and L. Peng, "A statistical integral equation model for shadow-corrected EM scattering from a Gaussian rough surface," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1843-1855, 2007.
doi:10.1109/TAP.2007.898503        Google Scholar

25. Kuo, C. H. and M. Moghaddam, "Scattering from multilayer rough surfaces based on the extended boundary condition method and truncated singular value decomposition," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 10, 2917-2929, 2006.
doi:10.1109/TAP.2006.882160        Google Scholar

26. Kuo, C. H. and M. Moghaddam, "Electromagnetic scattering from multilayer rough surfaces with arbitrary dielectric profiles for remote sensing of subsurface soil moisture," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 2, 349-366, 2007.
doi:10.1109/TGRS.2006.887164        Google Scholar

27. Duan, X. and M. Moghaddam, "3-D vector electromagnetic scattering from arbitrary random rough surfaces using stabilized extended boundary condition method for remote sensing of soil moisture," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 1, 87-103, 2011.
doi:10.1109/TGRS.2011.2160549        Google Scholar

28. Duan, X. and M. Moghaddam, "Bistatic vector 3-D scattering from layered rough surfaces using stabilized extended boundary condition method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 5, 2722-2733, 2013.
doi:10.1109/TGRS.2012.2215614        Google Scholar

29. Jezek, K. C., J. T. Johnson, M. R. Drinkwater, G. Macelloni, L. Tsang, M. Aksoy, and M. Durand, "Radiometric approach for estimating relative changes in intraglacier average temperature," IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 1, 134-143, 2015.
doi:10.1109/TGRS.2014.2319265        Google Scholar

30. Tan, S., M. Aksoy, M. Brogioni, G. Macelloni, M. Durand, K. C. Jezek, T. L. Wang, L. Tsang, J. T. Johnson, M. R. Drinkwater, and L. Brucker, "Physical models of layered polar firn brightness temperatures from 0.5 to 2 GHz," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 7, 3681-3691, 2015.
doi:10.1109/JSTARS.2015.2403286        Google Scholar

31. Brogioni, M., G. Macelloni, F.Montomoli, and K. C.Jezek, "Simulating multifrequency groundbased radiometric measurements at Dome C-Antarctica," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 9, 4405-4417, 2015.
doi:10.1109/JSTARS.2015.2427512        Google Scholar

32. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Vol. 2: Numerical Simulations, 705, Wiley Interscience, 2001.
doi:10.1002/0471224308

33. Johnson, J. T. and M. Zhang, "Theoretical study of the small slope approximation for ocean polarimetric thermal emission," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 2305-2316, 1999.
doi:10.1109/36.789627        Google Scholar