1. Harrach, B., J. K. Seo, and E. J. Woo, "Factorization method and its physical justification in frequency-difference electrical impedance tomography," IEEE Transactions on Medical Imaging, Vol. 29, No. 11, 1918-1926, 2010.
doi:10.1109/TMI.2010.2053553 Google Scholar
2. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003 Google Scholar
3. Polydorides, N., "Linearization error in electrical impedance tomography," Progress In Electromagnetics Research, Vol. 93, 323-337, 2009.
doi:10.2528/PIER09052503 Google Scholar
4. Borcea, L., "Electrical impedance tomography," Inverse Problems, Vol. 18, No. 6, R99-R136, 2002.
doi:10.1088/0266-5611/18/6/201 Google Scholar
5. Chaulet, N., S. Arridge, T. Betcke, and D. Holder, "The factorization method for three dimensional electrical impedance tomography," Inverse Problems, Vol. 30, No. 4, 2014.
doi:10.1088/0266-5611/30/4/045005 Google Scholar
6. Borcea, L., G. A. Gray, and Y. Zhang, "Variationally constrained numerical solution of electrical impedance tomography," Inverse Problems, Vol. 19, No. 5, 1159-1184, 2003.
doi:10.1088/0266-5611/19/5/309 Google Scholar
7. Abubakar, A. and P. M. van den Berg, "Nonlinear inversion in electrode logging in a highly deviated formation with invasion using an oblique coordinate system," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 1, 25-38, 2000.
doi:10.1109/36.823898 Google Scholar
8. Chen, X., "Subspace-based optimization method in electric impedance tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11-12, 1397-1406, 2009.
doi:10.1163/156939309789476301 Google Scholar
9. Chen, X., "Subspace-based optimization method for solving inverse-scattering problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 1, 42-49, 2010.
doi:10.1109/TGRS.2009.2025122 Google Scholar
10. van den Berg, P.M., A. L. van Broekhoven, and A. Abubakar, "Extended contrast source inversion," Inverse Problems, Vol. 15, No. 5, 1325-1344, 1999.
doi:10.1088/0266-5611/15/5/315 Google Scholar
11. Zhong, Y., X. Chen, and K. Agarwal, "An improved subspace-based optimization method and its implementation in solving three-dimensional inverse problems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 10, 3763-3768, 2010.
doi:10.1109/TGRS.2010.2049744 Google Scholar
12. Zhong, Y. and X. Chen, "An FFT twofold subspace-based optimization method for solving electromagnetic inverse scattering problems," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 914-927, 2011.
doi:10.1109/TAP.2010.2103027 Google Scholar
13. Gibson, W. C., The Method of Moments in Electromagnetics, CRC Press, 2014.
14. Lakhtakia, A. and G. W. Mulholland, "On two Numerical techniques for light scattering by dielectric agglomerated," Journal of Research of the National Institute of Standards and Technology, Vol. 98, No. 6, 699-716, 1993.
doi:10.6028/jres.098.046 Google Scholar
15. Hansen, P., M. E. Kilmer, and R. H. Kjeldsen, "Exploiting residual information in the parameter choice for discrete ill-posed problems," Bit Numerical Mathematics, Vol. 46, No. 1, 41-59, 2006.
doi:10.1007/s10543-006-0042-7 Google Scholar
16. Gil, A., J. Segura, and N. M. Temme, Numerical Methods for Special Functions, Society for Industrial and Applied Mathematics, 2007.
doi:10.1137/1.9780898717822
17. Dehghani, H. and M. Soleimani, "Numerical modelling errors in electrical impedance tomography," Physiol. Meas., Vol. 28, No. 7, S45-S55, 2007.
doi:10.1088/0967-3334/28/7/S04 Google Scholar
18. Stewart, G. W., Matrix Algorithms, Society for Industrial and Applied Mathematics, 1998.
doi:10.1137/1.9781611971408
19. Dai, Y. H. and Y. Yuan, "A nonlinear conjugate gradient method with a strong global convergence property," SIAM Journal on Optimization, Vol. 10, No. 1, 177-182, 1999.
doi:10.1137/S1052623497318992 Google Scholar