1. Scapaticci, R., L. Di Donato, I. Catapano, and L. Crocco, "A feasibility study on microwave imaging for brain stroke monitoring," Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012.
doi:10.2528/PIERB12022006 Google Scholar
2. Bozza, G., M. Brignone, and M. Pastorino, "Application of the no-sampling linear sampling method to breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 57, No. 10, 2525-2534, 2010.
doi:10.1109/TBME.2010.2055059 Google Scholar
3. Bozza, G., M. Brignone, M. Pastorino, M. Piana, and A. Randazzo, "A linear sampling approach to crack detection in microwave imaging," 2008 IEEE International Workshop on Imaging Systems and Techniques, 222-226, Crete, 2008.
doi:10.1109/IST.2008.4659973 Google Scholar
4. Cakoni, F. and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, 2006.
5. Agarwal, K. and X. Chen, "Applicability of MUSIC-type imaging in two-dimensional electromagnetic inverse problems," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3217-3223, 2008.
doi:10.1109/TAP.2008.929434 Google Scholar
6. Zhong, Y. and X. Chen, "MUSIC imaging and electromagnetic inverse scattering of multiplescattering small anisotropic spheres," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3542-3549, 2007.
doi:10.1109/TAP.2007.910488 Google Scholar
7. Iakovleva, E., S. Gdoura, D. Lesselier, and G. Perrusson, "Multistatic response matrix of a 3D inclusion in half space and MUSIC imaging," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2598-2609, 2007.
doi:10.1109/TAP.2007.904103 Google Scholar
8. Tortel, H., G. Micolau, and M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 687-719, 1999.
doi:10.1163/156939399X01113 Google Scholar
9. Devaney, A. J., E. A. Marengo, and F. K. Gruber, "Time-reversal-based imaging and inverse scattering of multiply scattering point targets," J. Acoust. Soc. Am., Vol. 118, No. 5, 3129-3138, 2005.
doi:10.1121/1.2042987 Google Scholar
10. Colton, D. and A. Kirsch, "A simple method for solving inverse scattering problems in the resonant region," Inverse Probl., Vol. 12, 383-393, 1996.
doi:10.1088/0266-5611/12/4/003 Google Scholar
11. Colton, D., M. Piana, and R. Potthast, "A simple method using morozov’s discrepancy principle for solving inverse scattering problems," Inverse Probl., Vol. 13, 1477-1493, 1997.
doi:10.1088/0266-5611/13/6/005 Google Scholar
12. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1431-1436, 2007.
doi:10.1109/TAP.2007.895563 Google Scholar
13. Kirsch, A., "Characterization of the shape of a scattering obstacle using the spectral data of the far-field operator," Inverse Probl., Vol. 14, 1489-1512, 1998.
doi:10.1088/0266-5611/14/6/009 Google Scholar
14. Kirsch, A., "Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory," Inverse Probl., Vol. 15, 413-429, 1999.
doi:10.1088/0266-5611/15/2/005 Google Scholar
15. Potthast, R., "A point source method for inverse acoustic and electromagnetic obstacle scattering problems," IMA J. Appl. Math., Vol. 61, No. 2, 119-140, 1998.
doi:10.1093/imamat/61.2.119 Google Scholar
16. Litman, A., D. Lesselier, and F. Santosa, "Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set," Inverse Probl., Vol. 14, No. 3, 685-706, 1998.
doi:10.1088/0266-5611/14/3/018 Google Scholar
17. Dorn, O. and D. Lesselier, "Level set methods for inverse scattering," Inverse Probl., Vol. 22, No. 4, R67-R131, 2006.
doi:10.1088/0266-5611/22/4/R01 Google Scholar
18. Kleinman, R. E. and P. M. den Berg, "Two-dimensional location and shape reconstruction," Radio Science, Vol. 29, No. 4, 1157-1169, 1994.
doi:10.1029/93RS03445 Google Scholar
19. Liseno, A. and R. Pierri, "Imaging perfectly conducting objects as support of induced currents: Kirchhoff approximation and frequency diversity," J. Opt. Soc. Am. A, Vol. 19, 1308-1318, 2002.
doi:10.1364/JOSAA.19.001308 Google Scholar
20. Shen, J., Y. Zhong, X. Chen, and L. Ran, "Inverse scattering problems of reconstructing perfectly electric conductors with TE illumination," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4713-4721, Sept. 2013.
doi:10.1109/TAP.2013.2271891 Google Scholar
21. Poli, L., G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a local shape function Bayesian compressive sensing approach," J. Opt. Soc. Am. A, Vol. 30, No. 6, 1261-1272, 2013.
doi:10.1364/JOSAA.30.001261 Google Scholar
22. Stevanovic, M. N., L. Crocco, A. R. Djordjevic, and A. Nehorai, "Higher order sparse microwave imaging of PEC scatterers," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 988-997, Mar. 2016.
doi:10.1109/TAP.2016.2521879 Google Scholar
23. Franceschetti, G., Electromagnetics: Theory, Techniques, and Engineering Paradigms, Springer Science & Business Media, 2013.
24. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582 Google Scholar
25. Massa, A., P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics — A review," IEEE Antennas and Propagation Magazine, Vol. 57, No. 1, 224-238, Feb. 2015.
doi:10.1109/MAP.2015.2397092 Google Scholar
26. Bevacqua, M., L. Crocco, L. Di Donato, T. Isernia, and R. Palmeri, "Exploiting field conditioning and sparsity for microwave imaging of non-weak buried targets," Radio Sci., 2016. Google Scholar
27. Shah, P., U. K. Khankhoje, and M. Moghaddam, "Inverse scattering using a joint L1 − L2 normbased regularization," IEEE Trans. Antennas Propag., Vol. 64, No. 4, 1373-1384, Apr. 2016.
doi:10.1109/TAP.2016.2529641 Google Scholar
28. Azghani, M., P. Kosmas, and F. Marvasti, "Microwave medical imaging based on sparsity and an iterative method with adaptive thresholding," IEEE Trans. Medical Imaging, Vol. 34, No. 2, 357-365, 2015.
doi:10.1109/TMI.2014.2352113 Google Scholar
29. Morabito, A. F., R. Palmeri, and T. Isernia, "A compressive-sensing-inspired procedure for array antenna diagnostics by a small number of phaseless measurements," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 3260-3265, Jul. 2016.
doi:10.1109/TAP.2016.2562669 Google Scholar
30. Bevacqua, M., T. Isernia, L. Crocco, and L. Di Donato, "A (CS)2 approach to inverse scattering," 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1-3, Nov. 16–19, 2014. Google Scholar
31. Hawes, M. B. and W. Liu, "Compressive sensing-based approach to the design of linear robust sparse antenna arrays with physical size constraint," IET Microwaves, Antennas & Propagation, Vol. 8, No. 10, 736-746, 2014.
doi:10.1049/iet-map.2013.0469 Google Scholar
32. Winters, D. W., B. D. Van Veen, and S. C. Hagness, "A sparsity regularization approach to the electromagnetic inverse scattering problem," IEEE Trans. Antennas Propag., Vol. 58, No. 1, 145-154, Jan. 2010.
doi:10.1109/TAP.2009.2035997 Google Scholar
33. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, 1998.
doi:10.1007/978-3-662-03537-5
34. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of Physics, 1998.
doi:10.1887/0750304359
35. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable nformation and measurement strategies," Radio Sci., Vol. 32, 2123-2138, 1997.
doi:10.1029/97RS01826 Google Scholar
36. Chen, S., D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput., Vol. 20, No. 1, 33-61, 1999.
doi:10.1137/S1064827596304010 Google Scholar
37. Tibshirani, R., "Regression shrinkage and selection via the lasso," J. Roy. Stat. Soc. Ser., Vol. 58, No. 1, 267-288, 1996. Google Scholar
38. Liu, Y., P. You, C. Zhu, X. Tan, and Q. H. Liu, "Synthesis of sparse or thinned linear and planar arrays generating reconfigurable multiple real patterns by iterative linear programming," Progress In Electromagnetics Research, Vol. 155, 27-38, 2016.
doi:10.2528/PIER15120401 Google Scholar
39. Brancaccio, A., G. Leone, and R. Solimene, "Single-frequency subsurface remote sensing via a non-cooperative source," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 9, 1-15, 2016.
doi:10.1080/09205071.2016.1182086 Google Scholar
40. Gennarelli, G., R. Solimene, F. Soldovieri, and M. G. Amin, "Three-dimensional through-wall sensing of moving targets using passive multistatic radars," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 1, 141-148, Jan. 2016.
doi:10.1109/JSTARS.2015.2443078 Google Scholar
41. Bevacqua, M. T. and R. Scapaticci, "A compressive sensing approach for 3D breast cancer microwave imaging with magnetic nanoparticles as contrast agent," IEEE Transactions on Medical Imaging, Vol. 35, No. 2, 665-673, Feb. 2016.
doi:10.1109/TMI.2015.2490340 Google Scholar
42. Soldovieri, F., A. Brancaccio, G. Leone, and R. Pierri, "Shape reconstruction of perfectly conducting objects by multiview experimental data," IEEE Trans. on Geosci. and Remote Sens., Vol. 43, No. 1, 65-71, Jan. 2005.
doi:10.1109/TGRS.2004.839432 Google Scholar
43. Belkebir, K. and M. Saillard, "Special section: Testing inversion algorithms against experimental data," Inverse Probl., Vol. 7, 1565-2028, 2001.
doi:10.1088/0266-5611/17/6/301 Google Scholar
44. CVX Research, Inc., , CVX: Matlab software for disciplined convex programming, 2.0, http://cvxr.com/cvx, Apr. 2011.
45. Grant, M. and S. Boyd, "Graph implementations for non smooth convex programs," Lecture Notes in Control and Information Sciences, 95-110, Chapter Recent Advances in Learning and Control (a tribute to M. Vidyasagar), Springer, 2008.
doi:10.1007/978-1-84800-155-8_7 Google Scholar
46. Richmond, J., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antennas Propag., Vol. 13, No. 3, 334-341, 1965.
doi:10.1109/TAP.1965.1138427 Google Scholar
47. Wirgin, A., "The inverse crime," ArXiv Mathematical Physics e-prints, Jan. 2004. Google Scholar