1. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855 Google Scholar
2. Ling, H., R. C. Chou, and S. W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Trans. Antennas Propag., Vol. 37, No. 2, 194-205, 1989.
doi:10.1109/8.18706 Google Scholar
3. Tiberio, R., A. Toccafondi, A. Polemi, and S. Maci, "Incremental theory of diffraction: A newimproved formulation," IEEE Trans. Antennas Propag., Vol. 52, No. 9, 2234-2243, Mar. 2004.
doi:10.1109/TAP.2004.834142 Google Scholar
4. Rubinowicz, A., "Darstellung der sommerfeldschen beugungswelle in einer gestalt, die Beitrage der einzelnen elemente der beugende kante zur gesamten beugungswelle erkennen last," Acta Phisica Polonica A, Vol. 28, No. 6, 841-860, 1965. Google Scholar
5. Canta, S., D. Erricolo, and A. Toccafondi, "Incremental fringe formulation for a complex source point beam expansion," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1553-1561, May 2011.
doi:10.1109/TAP.2011.2122291 Google Scholar
6. Mitzner, K. M., "Incremental length diffraction coefficients,", Northrop Corp, Aircraft Div., Tech Rep. AFAL-TR-73-296, 1974. Google Scholar
7. Hansen, T. B. and R. A. Shore, "“Incremental lenght diffraction coefficient for the shadow boundary of a general cylinder,", Rome Laboratory, Air Force Material Command, Tech. Rep. RL-TR-97-151, 1997. Google Scholar
8. Breinbjerg, O., "Higher order equivalent edge currents for fringe wave radar scattering by perfectly conducting polygonal plates," IEEE Trans. Antennas Propag., Vol. 40, No. 12, 1543-1554, Dec. 1992.
doi:10.1109/8.204745 Google Scholar
9. Fock, V. A., "The distributions of currents induced by a plane wave on the surface of a conductor," J. Phys., Vol. 10, 130-136, 1946. Google Scholar
10. Shore, R. A. and A. D. Yaghjian, "Incremental diffraction coefficients for planar surfaces," IEEE Trans. Antennas Propag., Vol. 36, No. 1, 55-70, Jan. 1988.
doi:10.1109/8.1075 Google Scholar
11. Michaeli, A., "Elimination of infinities in equivalent edge currents, Part I: Fringe current components," IEEE Trans. Antennas Propag., Vol. 34, 912-918, Jul. 1986. Google Scholar
12. Michaeli, A., "Elimination of infinities in equivalent edge currents, Part II: Physical optics components," IEEE Trans. Antennas Propag., Vol. 34, No. 8, 1986.
doi:10.1109/TAP.1986.1143913 Google Scholar
13. Hansen, T. B. and R. A. Shore "Incremental length diffraction coefficients for the shadow boundary of a convex cylinder," IEEE Trans. Antennas Propag., Vol. 46, No. 10, 1458-1466, Oct. 1998.
doi:10.1109/8.725277 Google Scholar
14. Yaghjian, A. D., R. A. Shore, and M. B. Woodworth, "Shadow boundary incremental length diffraction coefficients for perfectly conducting smooth, convex surfaces," Radio Sci., Vol. 31, No. 6, 1681-1695, Dec. 1996.
doi:10.1029/96RS02276 Google Scholar
15. Sandstrom, S. K., "A remark on the computation of Fock functions for negative arguments," Int. J. Electron. Commun. (AEU), Vol. 62, No. 4, 324-326, Apr. 2008.
doi:10.1016/j.aeue.2007.08.001 Google Scholar
16. Wu, T. T., "High-frequency scattering," Phys. Rev., Vol. 104, No. 5, 1201-1212, 1956.
doi:10.1103/PhysRev.104.1201 Google Scholar
17. Honl, H., A. W. Maue, and K. Westpfahl, Theory of Diffraction, Springer, 1961.
18. Wu, Y. M., L. J. Jiang, and W. C. Chew, "An efficient method for computing highly oscillatory physical optics integral," Progress In Electromagnetics Research, Vol. 127, 211-257, 2012.
doi:10.2528/PIER12022308 Google Scholar
19. Wu, Y. M., L. J. Jiang, W. E. I. Sha, and W. C. Chew, "The numerical steepest descent path method for calculating physical optics integrals on smooth conducting surfaces," IEEE Trans. Antennas Propag., Vol. 61, No. 8, 4183-4193, Aug. 2013.
doi:10.1109/TAP.2013.2259788 Google Scholar
20. Wu, Y. M., L. J. Jiang, W. C. Chew, and Y. Q. Jin, "The contour deformation method for calculating the high ffrequency scattered field by the Fock current on the surface of the 3-D convex cylinder," IEEE Trans. Antennas Propag., Vol. 63, No. 5, 2180-2190, May 2015.
doi:10.1109/TAP.2015.2407411 Google Scholar
21. Shore, R. A. and A. D. Yaghjian, "Shadow boundary incremental length diffraction coefficients applied to scattering from 3D bodies," IEEE Trans. Antennas Propag., Vol. 49, No. 2, 200-210, Feb. 2001.
doi:10.1109/8.914277 Google Scholar
22. Wu, Y. M. and W. C. Chew, "The modern high frequency techniques for solving electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 156, 63-82, 2016.
doi:10.2528/PIER15110208 Google Scholar
23. Wu, Y. M. and S. J. Teng, "Frequency-independent approach to calculate physical optics radiations with the quadratic concave phase variations," J. Comput. Phys., Vol. 324, 44-61, 2016.
doi:10.1016/j.jcp.2016.07.029 Google Scholar