1. Nitz, W. R., A. Oppelt, W. Renz, C. Manke, M. Lenhart, and J. Link, "On the heating of linear conductive structures as guide wires and catheters in interventional MRI," Journal of Magnetic Resonance Imaging, Vol. 13, No. 1, 105-114, 2001.
doi:10.1002/1522-2586(200101)13:1<105::AID-JMRI1016>3.0.CO;2-0 Google Scholar
2. Nagaoka, T., S. Watanabe, K. Sakurai, E. Kunieda, S. Watanabe, M. Taki, and Y. Yamanaka, "Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic- field dosimetry," Physics in Medicine and Biology, Vol. 49, No. 1, 1-15, 2003.
doi:10.1088/0031-9155/49/1/001 Google Scholar
3. Garrett, J. D. and E. C. Fear, "Average dielectric property analysis of complex breast tissue with microwave transmission measurements," Sensors, Vol. 15, No. 1, 1199-1216, 2015.
doi:10.3390/s150101199 Google Scholar
4. Persson, M., A. Fhager, H. D. Trefna, Y. Yu, T. McKelvey, G. Pegenius, J.-E. Karlsson, and M. Elam, "Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible," IEEE Transactions on Biomedical Engineering, Vol. 61, No. 11, 2806-2817, 2014.
doi:10.1109/TBME.2014.2330554 Google Scholar
5. Meaney, P. M., D. Goodwin, A. H. Golnabi, T. Zhou, M. Pallone, S. D. Geimer, G. Burke, and K. D. Paulsen, "Clinical microwave tomographic imaging of the calcaneus: A first-in-human case study of two subjects," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 12, 3304-3313, 2012.
doi:10.1109/TBME.2012.2209202 Google Scholar
6. Butterworth, I., J. Seralles, C. S. Mendoza, L. Giancardo, and L. Daniel, "A wearable physiological hydration monitoring wristband through multi-path non-contact dielectric spectroscopy in the microwave range," 2015 IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 60-61, IEEE, 2015.
doi:10.1109/IMWS-BIO.2015.7303776 Google Scholar
7. Irastorza, R. M., M. Mayosky, and F. Vericat, "Noninvasive measurement of dielectric properties in layered structure: A system identification approach," Measurement, Vol. 42, No. 2, 214-224, 2009.
doi:10.1016/j.measurement.2008.06.001 Google Scholar
8. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
9. Gabriel, C., "Dielectric properties of biological tissue: Variation with age," Bioelectromagnetics, Vol. 26, No. S7, S12-S18, 2005.
doi:10.1002/bem.20147 Google Scholar
10. Winters, D. W., J. D. Shea, P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Transactions on Medical Imaging, Vol. 28, No. 7, 969-981, 2009.
doi:10.1109/TMI.2008.2008959 Google Scholar
11. Chandra, R., H. Zhou, I. Balasingham, and R. M. Narayanan, "On the opportunities and challenges in microwave medical sensing and imaging," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 7, 1667-1682, 2015.
doi:10.1109/TBME.2015.2432137 Google Scholar
12. Bourqui, J. and E. C. Fear, "System for bulk dielectric permittivity estimation of breast tissues at microwave frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 9, 3001-3009, 2016.
doi:10.1109/TMTT.2016.2586486 Google Scholar
13. Bourqui, J. and E. C. Fear, "Shielded UWB sensor for biomedical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1614-1617, 2012.
doi:10.1109/LAWP.2012.2235814 Google Scholar
14. Popovic, D., L. McCartney, C. Beasley, M. Lazebnik, M. Okoniewski, S. C. Hagness, and J. H. Booske, "Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1713-1722, 2005.
doi:10.1109/TMTT.2005.847111 Google Scholar
15. Lavoie, B. R., M. Okoniewski, and E. C. Fear, "Estimating the effective permittivity for reconstructing accurate microwave-radar images," PLOS One, Vol. 11, No. 9, e0160849, 2016.
doi:10.1371/journal.pone.0160849 Google Scholar
16. Engen, G. F. and C. A. Hoer, "Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Transactions on Microwave Theory and Techniques, Vol. 27, No. 12, 987-993, 1979.
doi:10.1109/TMTT.1979.1129778 Google Scholar
17. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Transactions on Instrumentation and Measurement, Vol. 39, No. 2, 387-394, 1990.
doi:10.1109/19.52520 Google Scholar
18. Rolfes, I. and B. Schiek, "Calibration methods for microwave free space measurements," Advances in Radio Science, Vol. 2, No. A.1, 19-25, 2005.
doi:10.5194/ars-2-19-2004 Google Scholar
19. Blackham, D. V., "Free space characterization of materials," Antenna Measurement Techniques Association Symposium, No. 15, 58-60, 1993. Google Scholar
20. Bartley, P. G. and S. B. Begley, "Improved free-space S-parameter calibration," 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings, Vol. 1, 372-375, IEEE, 2005.
doi:10.1109/IMTC.2005.1604138 Google Scholar
21. Zhang, N., J. Cheng, G. Zhang, C. Cheng, and J. Liu, "A free-space measurement of complex permittivity in 8 GHz–40 GHz," 2014 Asia-Pacific Microwave Conference, 849-851, IEEE, 2014. Google Scholar
22. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382 Google Scholar
23. Kanda, M., "Time domain sensors for radiated impulsive measurements," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 3, 438-444, 1983.
doi:10.1109/TAP.1983.1143057 Google Scholar
24. Mason, S. J., Feedback Theory: Further Properties of Signal Flow Graphs, Research Laboratory of Electronics, Massachusetts Institute of Technology, 1956.
25. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, No. 11, 2271, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
26. Henriksson, T., N. Joachimowicz, A. Joisel, C. Conessa, A. Diet, and J.-C. Bolomey, "Quantitative microwave breast phantom imaging using a planar 2.45 GHz system," General Assembly of the International Union of Radio Science, 1-4, 2008. Google Scholar
27. Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 822-824, 2007.
doi:10.1109/LMWC.2007.910465 Google Scholar
28. Popovic, D. and M. Okoniewski, "Precision open-ended coaxial probe for dielectric spectroscopy of breast tissue," 2002 IEEE Antennas and Propagation Society International Symposium, 815-818, IEEE, 2002. Google Scholar
29. Chalapat, K., K. Sarvala, J. Li, and G. S. Paraoanu, "Wideband reference-plane invariant method for measuring electromagnetic parameters of materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 9, 2257-2267, 2009.
doi:10.1109/TMTT.2009.2027160 Google Scholar
30. Amineh, R. K., M. Ravan, A. Trehan, and N. K. Nikolova, "Near-field microwave imaging based on aperture raster scanning with TEM horn antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 928-940, 2011.
doi:10.1109/TAP.2010.2103009 Google Scholar
31. Venkatesh, M. S. and G. S. V. Raghavan, "An overview of microwave processing and dielectric properties of agri-food materials," Biosystems Engineering, Vol. 88, No. 1, 1-18, 2004.
doi:10.1016/j.biosystemseng.2004.01.007 Google Scholar