1. Cui, B., C. Wang, and X.-W. Sun, "Microstrip Array Double-Antenna (MADA) technology applied in millimeter wave compact radar front-end," Progress In Electromagnetics Research, Vol. 66, 125-136, 2006.
doi:10.2528/PIER06110902 Google Scholar
2. Camblor-Diaz, R., S. Ver-Hoeye, C. Vazquez-Antuna, G. R. Hotopan, M. Fernandez-Garcia, and F. Las Heras Andres, "Sub-millimeter wave frequency scanning 8 × 1 antenna array," Progress In Electromagnetics Research, Vol. 132, 215-232, 2012.
doi:10.2528/PIER12072305 Google Scholar
3. Hasch, J., E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, "Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band," EEE Trans. Microw. Theory Techn., Vol. 60, No. 3, Part 2, 845-860, 2012. Google Scholar
4. Guermandi, D., Q. Shi, A. Medra, T. Murata, W. Van Thillo, A. Bourdoux, P. Wambacq, and V. Giannini, "A 79 GHz binary phase-modulated continuous-wave radar transceiver with TX-to-RX spillover cancellation in 28 nm CMOS," 2015 IEEE International Solid-State Circuits Conference (ISSCC), 1-3, 2015. Google Scholar
5. Wong, K. W., L. Chiu, and Q. Xue, "A 2-D van atta array using star-shaped antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1204-1206, 2007.
doi:10.1109/TAP.2007.893407 Google Scholar
6. Yousefzadeh, N., C. Ghobadi, and M. Kamyab, "Consideration of mutual coupling in a microstrip patch array using fractal elements," Progress In Electromagnetics Research, Vol. 66, 41-49, 2006.
doi:10.2528/PIER06081401 Google Scholar
7. Farahbakhsh, A., M. Mosalanejad, Gh. Moradi, and Sh. Mohanna, "Using polygonal defect in ground structure to reduce mutual coupling in microstrip array antenna," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 2, 194-201, 2014.
doi:10.1080/09205071.2013.861750 Google Scholar
8. Ghosh, C. K., B. Mandal, and S. K. Parui, "Mutual coupling reduction of a dual frequency microstrip antenna array by using U-shaped DGS and inverted U-shaped microstrip resonator," Progress In Electromagnetics Research C, Vol. 48, 61-68, 2014.
doi:10.2528/PIERC14020603 Google Scholar
9. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
doi:10.2528/PIER12121205 Google Scholar
10. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 11, 389-391, 2012.
doi:10.1109/LAWP.2012.2193111 Google Scholar
11. Qamar, Z. and H. C. Park, "Compact waveguided metamaterials for suppression of mutual coupling in microstrip array," Progress In Electromagnetics Research, Vol. 149, 183-192, 2014.
doi:10.2528/PIER14063002 Google Scholar
12. Li, Y. and K.-M. Luk, "60-GHz substrate integrated waveguide fed cavity-backed aperture-coupled microstrip patch antenna arrays," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 1075-1085, 2015.
doi:10.1109/TAP.2015.2390228 Google Scholar
13. Ou Yang, J., S. Bo, J. Zhang, and F. Yang, "A low-profile unidirectional cavity-backed log-periodic slot antenna," Progress In Electromagnetics Research, Vol. 119, 423-433, 2011.
doi:10.2528/PIER11070503 Google Scholar
14. Kam, D., D. Liu, A. Natarajan, S. Reynolds, H. Chen, and B. A. Floyd, "LTCC packages with embedded phased-array antennas for 60 GHz communications," IEEE Antennas Wireless Propag. Lett., Vol. 21, No. 3, 142-144, 2011. Google Scholar
15. Pazin, L. and Y. Leviatan, "A compact 60-GHz tapered slot antenna printed on LCP substrate for WPAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 9, 272-275, 2010.
doi:10.1109/LAWP.2010.2046612 Google Scholar
16. Brebels, S., Ch. Soens, W. De Raedt, and G. A. E. Vandenbosch, "Compact LTCC antenna package for 60 GHz wireless transmission of uncompressed video," IEEE MTT-S International Microwave Symposium Digest, 1-4, 2011. Google Scholar
17. Liu, D., J. A. G. Akkermans, H. Chen, and B. Floyd, "Packages with integrated 60-GHz aperturecoupled patch antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3607-3616, 2011.
doi:10.1109/TAP.2011.2163760 Google Scholar
18. Enayati, A., G. A. E. Vandenbosch, and W. De Raedt, "Millimeter-wave horn-type antenna-inpackage solution fabricated in a teflon-based multi-layer PCB technology," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1581-1590, 2013.
doi:10.1109/TAP.2013.2242827 Google Scholar
19. Mosalanejad, M., S. Brebels, I. Ocket, V. Volski, C. Soens, and G. A. E. Vandenbosch, "A complete measurement system for integrated antennas at millimeter wavelengths," 9th European Conference on Antennas and Propagation (EuCAP), 1-5, 2015. Google Scholar
20. Haimovich, A., R. Blum, and L. Cimini, "MIMO radar with widely separated antennas," IEEE Signal Process. Mag., Vol. 25, No. 1, 116-129, 2008.
doi:10.1109/MSP.2008.4408448 Google Scholar
21. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, 2003.
doi:10.1049/el:20030495 Google Scholar
22. Mohammadpour-Aghdam, K., S. Brebels, A. Enayati, R. Faraji-Dana, G. Vandenbosch, and W. DeRaedt, "RF probe influence study in millimeterwave antenna pattern measurements," International Journal of RF and Microwave Computer-aided Engineering, Vol. 21, No. 4, 413-420, 2011.
doi:10.1002/mmce.20530 Google Scholar
23. Aspocomp PCB technology, Keilaranta, Finland, Website: “https://www.aspocomp.com”.